Безмасляные центробежные чиллеры с затопленным испарителем

Безмасляные центробежные чиллеры с затопленным испарителем

Раствора гликоля и иных рабочих жидкостей, используемых в качестве хладоносителя для конечных устройств высокопроизводительной системы центрального кондиционирования — фанкойлов, воздухообрабатывающих установок, вентустановок с рекуперацией тепла и др. 


Всего один подобный чиллер способен обеспечить холодной водой систему кондиционирования 20—25-этажного административного здания, бизнес-центра, отеля, иного высотного объекта. В качестве примера можно привести 24-этажный бизнес-центр Alexandra Point (общая площадь — 18,6 тыс. кв. м) в центре Сингапура, обслуживаемый двумя безмасляными центробежными чиллерами производства TICA, один из которых выполняет роль резервного.

бизнес-центр.jpg
24-этажный бизнес-центр Alexandra Point в Сингапуре


Принцип действия данных устройств идентичен схеме работы чиллеров с водяным охлаждением, которые оснащаются винтовыми или центробежными компрессорами, смазываемыми маслом. Конструктивные особенности безмасляных чиллеров объясняются наличием не нуждающихся в смазке высокопроизводительных центробежных компрессоров с радиальным и осевым магнитными подшипниками и, как следствие, отсутствием системы снабжения, очистки и возврата масла.


компрессор с магнитнвми подшипниками.png
Центробежный компрессор с магнитными подшипниками


Высочайшая энергоэффективность и наименьшие эксплуатационные затраты на протяжении всего жизненного цикла оборудования


Безмасляные центробежные чиллеры с затопленным испарителем отличаются не только высокой производительностью, но и наибольшей энергоэффективностью среди всех устройств аналогичного назначения. В частности, агрегаты, выпускаемые компанией TICA и ее канадским активом — промышленной группой SMARDT, приобретенной в 2018 году и являющейся разработчиком и ведущим мировым производителем безмасляных чиллеров, характеризуются наименьшими эксплуатационными затратами на протяжении всего срока службы. Их энергоэффективность в среднем на 32% превышает аналогичный показатель смазываемых маслом новейших винтовых охладителей той же мощности. Безмасляные центробежные чиллеры с затопленным испарителем производства TICA — SMARDT расходуют на 50—65% электроэнергии меньше, чем спиральные, винтовые и центробежные агрегаты, которые эксплуатируются уже на протяжении 7—10 лет.


В режиме полной нагрузки чиллеры, не нуждающиеся в смазке, расходуют на охлаждение одной тонны воды 0,50—0,55 кВт, в режиме частичной нагрузки — 0,30—0,35 кВт. Производительность данных приборов регулируется автоматически в зависимости от тепловой нагрузки. Как показывают многочисленные наблюдения за оборудованием SMARDT, установленным в различных городах США, в режиме 100-процентной нагрузки оно эксплуатируется не более 4% рабочего времени в год. Таким образом, безмасляные центробежные чиллеры с затопленным испарителем практически всегда работают в режиме энергосбережения, а их интегральный показатель энергоэффективности при частичной нагрузке IPLV достигает 10,5—12. Для других чиллеров такие показатели пока недостижимы.


время работы.jpg
Время работы безмасляного чиллера при различных нагрузках (в процентном выражении)

Безмасляные центробежные чиллеры с затопленным испарителем производства TICA — SMARDT, оснащенные несколькими компрессорами Turbocor, работают даже в режиме 5—10-процентной нагрузки. Один такой агрегат может легко заменить сразу несколько спиральных или винтовых чиллеров. Установка двух-восьми центробежных компрессоров с магнитными подшипниками позволяет равномерно распределить нагрузку между ними или зарезервировать дополнительные мощности (например, в случае проведения технических работ либо появления дополнительных систем вентиляции и кондиционирования, нуждающихся в охлажденной воде).


Поскольку в смазочных материалах нет необходимости, безмасляные центробежные чиллеры с затопленным испарителем не оснащаются дорогостоящей системой подачи, очистки и возврата масла. Благодаря этому техническое обслуживание устройств не вызывает никаких затруднений.


Еще одно важное преимущество безмасляных чиллеров — стабильная и бесперебойная работа на протяжении всего срока службы, достигающего 30 лет. Причем в течение всего этого периода энергоэффективность устройства не снижается, а расходы на его эксплуатацию и техническое обслуживание не возрастают. Для сравнения: спустя пять лет фактическая энергоэффективность смазываемых маслом винтовых и центробежных чиллеров снижается на 21—33% по отношению к заявленной производителем (по данным Американского института систем отопления, охлаждения и кондиционирования воздуха AHRI). 


расходы на эксплуатацию.jpg
Расходы на эксплуатацию и техническое обслуживание чиллеров производительностью 300 кВт на протяжении всего срока службы (по данным AHRI)

Причина кроется в том, что даже минимальное содержание в хладагенте (например, фреоне R134a) масла, необходимого для нормальной эксплуатации винтового или обычного центробежного компрессора, со временем приводит к образованию масляной пленки на стенках и трубках кожухотрубного теплообменника. В результате эффективность теплообмена снижается на 15—25% (согласно результатам научно-исследовательского проекта № 361, выполненного экспертами Американского общества инженеров по отоплению, охлаждению и кондиционированию воздуха ASHRAE), а потребление электроэнергии возрастает.


Ввиду отсутствия системы маслоснабжения безмасляные центробежные чиллеры с затопленным испарителем лишены указанного выше недостатка. Их энергоэффективность и расходы на эксплуатацию остаются неизменными даже по прошествии 25—30 лет.


Как показывают исследования, уже по истечении двух лет совокупные затраты на приобретение, эксплуатацию и техобслуживание смазываемых винтовых чиллеров, включая покупку и установку резервного генератора (для пуска винтового компрессора требуется 500—700 А) и шумоподавляющих систем (работа таких компрессоров сопровождается высокочастотным шумом), примерно на 20% превышают аналогичные расходы, связанные с приобретением и работой безмасляных агрегатов. Последние не нуждаются ни в дополнительном генераторе (для пуска центробежного компрессора требуется всего 2 А), ни в системе шумопоглощения (уровень шума при эксплуатации безмасляного чиллера не превышает 77 дБ(А) — примерно такой же показатель фиксируется во время работы наружного блока VRF-системы).


общие расходы.jpg
Общие расходы после двух лет эксплуатации смазываемого маслом винтового чиллера и безмасляного центробежного чиллера

Схема работы безмасляного центробежного чиллера с затопленным испарителем и его конструктивные элементы


Конструкция безмасляного центробежного чиллера с затопленным испарителем, выпускаемого TICA — SMARDT, относительно проста. Его основными компонентами являются: центробежные компрессоры Turbocor с магнитными подшипниками; затопленный испаритель и конденсатор, представляющие собой классические кожухотрубные теплообменники большой емкости; электронные расширительные клапаны, регулирующие объем поступающего в испаритель хладагента; запорная арматура, в частности клапаны аварийного сброса давления; датчики температуры и давления; шкаф автоматики, включающий все необходимые элементы и защитные устройства, гарантирующие безопасное подключение к источнику питания и немедленное отключение чиллера в случае возникновения нештатных ситуаций, плату управления с программируемым логическим контроллером и сенсорный экран.


схема.jpg
Схема безмасляного центробежного чиллера с затопленным испарителем, оснащенного двумя центробежными компрессорами

При эксплуатации чиллера в режиме охлаждения воды, раствора гликоля и т.п. сконденсированный жидкий хладагент с помощью электронного расширительного клапана (4) впрыскивается в нижнюю часть испарителя. Благодаря распределительной пластине (3) фреон R134A равномерно рассеивается по всему периметру данного кожухотрубного теплообменника. В нем имеющий низкое давление хладагент отбирает тепло у воды, поступающей из системы центрального кондиционирования и циркулирующей во встроенных медных трубках (8). В результате теплообмена, осуществляемого через поверхность трубок, рабочая жидкость охлаждается до заданной пользователем температуры и вновь возвращается в систему центрального кондиционирования, а фреон закипает и испаряется (2).


Благодаря создаваемому компрессором (1) давлению всасывания газообразный хладагент устремляется в верхнюю часть испарителя. Захватываемые вместе с паром мельчайшие жидкие частицы фреона, которые могут привести к повреждению компрессора, задерживаются туманоуловителями (5). Далее газообразный хладагент пропускается через направляющие лопатки (6) и поступает в порт всасывания (7) компрессора. При этом угол всасывания фреона изменяется таким образом, чтобы обеспечивалось его максимальное сжатие при заданной частоте вращения ротора.


работа испарителя.jpg
Схема работы испарителя безмасляного центробежного чиллера

Всасываемый в компрессор перегретый хладагент имеет низкое давление. Он проходит через впускные направляющие лопатки (1), используемые для регулирования производительности компрессора в условиях низкой нагрузки, и нагнетается в камеру с первой крыльчаткой (2) (первая ступень компрессии). Центробежная сила, которая создается этим вращающимся рабочим колесом, увеличивает скорость и давление фреонового пара. Затем, минуя лопатки (3), минимизирующие завихрения высокоскоростного пара, он направляется в камеру со второй крыльчаткой (4) (вторая ступень компрессии). С помощью данного рабочего колеса хладагент снова сжимается и нагнетается в спираль (5), представляющую собой изогнутую воронку, сечение которой увеличивается по мере приближения к выпускному порту компрессора. За счет этого скорость газа уменьшается, а его давление и температура возрастают. Далее он поступает в безлопаточный диффузор (6) — канал, ограниченный двумя сужающимися стенками и улучшающий структуру фреонового потока, а затем в выпускной порт (7) компрессора.

центробежный компрессор.jpg
Схема центробежного компрессора Turbocor


После этого перегретый газ, имеющий высокое давление, нагнетается в верхнюю часть конденсатора и с помощью отклоняющейся пластины рассеивается по всему периметру кожухотрубного теплообменника. По мере соприкосновения с поверхностью встроенных медных трубок, по которым течет поступающая из градирни холодная вода, фреон охлаждается и конденсируется, переходя в жидкое агрегатное состояние. Затем через электронный расширительный клапан он снова впрыскивается в нижнюю часть испарителя, и весь цикл повторяется.


Безмасляные центробежные чиллеры с затопленным испарителем производства TICA — SMARDT. Преимущества


В линейку безмасляных центробежных чиллеров с затопленным испарителем, выпускаемых совместным предприятием TICA — SMARDT, входят модели производительностью от 1055 до 4220 кВт (300—1200 RT). Каждый прибор комплектуется несколькими компрессорами Danfoss Turbocor модели TT300 (выходная мощность — 211—316,5 кВт) или TT400 (422—527,5 кВт) на магнитных подшипниках. Единственные движущиеся в этих компрессорах компоненты — ротор и его крыльчатки — левитируют (парят в воздухе) благодаря магнитному полю, создаваемому осевым и радиальным подшипниками. Физический контакт ротора с обмотками статора, а следовательно, и трение между ними исключены. В результате отсутствуют потери производительности, а износостойкость и срок службы компрессоров значительно возрастают.


Температура окружающей среды, при которой допускается работа устройства в режиме частичной или полной нагрузки, — от +3 до +41 °C. Чиллер в низкотемпературном исполнении может эксплуатироваться при -10 °C. Максимальная температура окружающей среды, при которой возможен запуск изделия в режиме ожидания, — 54 °C.


Температура воды на выходе устройства задается пользователем самостоятельно. Она варьируется в пределах от 3 до 16 °C (по умолчанию — 7 °C). Максимальная температура рабочей жидкости, поступающей в безмасляный центробежный чиллер, составляет 24 °C. Разница температур воды на входе и на выходе агрегата может достигать 3—9 градусов Цельсия.


Информация о текущем состоянии системы и выполненных технических работах регистрируется устройством записи и хранения данных. Мониторинг оборудования можно осуществлять с помощью сенсорного дисплея или дистанционно. В чиллерах реализована поддержка платформ и стандартных протоколов связи Modbus, BACnet, LonWorks, N2. Благодаря этому устройства легко интегрируются в автоматизированную систему управления зданием (Building Management System, BMS).


Сертификаты и гарантия


Все безмасляные центробежные чиллеры с затопленным испарителем, выпускаемые совместным предприятием TICA — SMARDT, внесены в список ETL — утвержденный на правительственном уровне в США и Канаде перечень наиболее эффективного оборудования. Котлы, электродвигатели, кондиционеры, вентиляционные установки и холодильное оборудование, претендующие на включение в данный список, должны соответствовать самым строгим критериям энергосбережения. Как правило, в ETL включаются 25% лучших изделий на рынке.


Безмасляные центробежные чиллеры с затопленным испарителем имеют гарантию электробезопасности на весь срок службы. Испарители и конденсаторы, которыми оснащаются устройства, полностью соответствуют нормам Американского общества инженеров-механиков (ASME) для сосудов высокого давления. На всю продукцию TICA — SMARDT предоставляется расширенная гарантия сроком до 5 лет.

5 лет.jpg


Параметры энергоэффективности центробежных чиллеров определены в соответствии со стандартом AHRI 551/591. Интегральный показатель энергоэффективности при частичной нагрузке (IPLV) любого чиллера, выпускаемого TICA — SMARDT, всегда значительно превышает минимальные уровни, установленные стандартами ASHRAE 90.1 (США), CSA 743 (Канада), Eurovent (Евросоюз), MEPS (Австралия), CRAA (Китай) и др.


Сравнительные характеристики безмасляных центробежных чиллеров с затопленным испарителем


Модель

WB140.3H

WB145.3H

WB240.5H

WB300.6H

Источник питания

380 В 50 Гц

380 В 50 Гц

380 В 50 Гц

380 В 50 Гц

Производительность, кВт

1055 (300 RT)

1143 (325 RT)

1758 (500 RT)

2110 (600 RT)

Потребляемая мощность, кВт

156

168,5

257,2

309,7

Энергопотребление, кВт/т воды

0,52

0,52

0,51

0,52

Интегральный показатель энергоэффективности при частичной нагрузке (IPLV)

11,18

11,29

11,32

11,37

Максимальный рабочий ток, А

269,5

288,6

444,9

545,1

Испаритель

расход воды, л/с

50,4

54,6

84,0

100,7

гидравлическое сопротивление, кПа

41

29

74

25,2

наружный диаметр соединительного трубопровода, мм

200

200

250

300

Конденсатор

расход воды, л/с

63

68,3

104,9

116,6

гидравлическое сопротивление, кПа

20,4

36

76

26

наружный диаметр соединительного трубопровода, мм

150

200

200

250

Компрессор

марка

Danfoss Turbocor

Danfoss Turbocor

Danfoss Turbocor

Danfoss Turbocor

количество

3

3

5

6

Хладагент

R134A

R134A

R134A

R134A

Вес при эксплуатации, кг

7170

7575

10980

12705

Габариты устройства, мм

длина

5147

4145

5943

5155

ширина

1399

2118

2277

2661

высота

2309

1851

1840

2550

Гарантия

5 лет

5 лет

5 лет

5 лет