

Healthy VRF

VRF Development Process

Scientific Research Strength

TICA is the first Chinese central air conditioner brand to establish R&D institute in Japan

Engaged in advanced research on technologies of VRF, heat pump water heater, cryo-refrigeration, heat pump chiller, professional ACU, air purifier, etc.; utilizing talents in Japan to promote the development of Chinese central airconditioning technology. TICA 天加日本研究所 TICA R&D Institute Japan

Boasting industry-leading CNAS-certified Enthalpy Difference Labs

In accordance with GB, IEC, TUV and CSA standards, adhering to the principles of impartiality, independence and scientific standards as well as people-oriented.

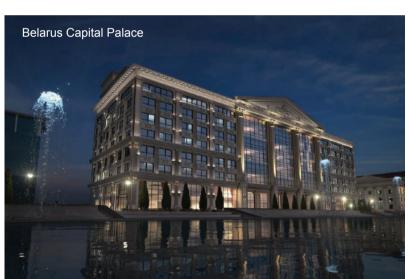
Application Solutions

Office Complexes

Enjoy comfort while working

Hotels & Shopping Malls

Increase your business, not your bills


Hotels

Shopping malls

Factories

One for Every Factory

Other Applications

Meeting all expectations

Hospitals

Schools

Airports

INDEX

Outdoor Unit	8
High Efficiency	10
High Reliability	10
Enhanced Comfort	13
Easy Installation And Service Refrigerant Piping	14 16
TIMS Ark Series Heat Pump	17
Modular Full Inverter ODUs Independent Full Inverter ODUs	19 23
TIMS Extra Series Heat Pump	24
Side Discharge VRF Top Discharge VRF	26 27
VRF Mini Series Heat Pump	28
Mini VRF	31
TIMS Series Cooling Only	32
Cooling only VRF	34
Inoor Unit Lineup	36
AHU KIT	39
One-way Cassette	40
Two-way Cassette	42
Round Flow Cassette	44
Slim Duct	46
Medium Static Pressure Duct	48
High Static Pressure Duct	50
Wall Mounted	52
Celling & Floor Full-Fresh Air Handling Unit	54 56
Full-Fresh All Handling Onit	50
Fresh air Solutions	58
Heat Recovery Ventilator (HRV)	59
Standard Series Fresh Air Ventilators	60
High-End Series Fresh Air Ventilators	60
TIMS HYplus Healthy Unit	61
Hyplus Healthy Duct	62
Intelligent Control	66
Building Management System (BMS)	68
Intelligent Software	69
Branch Pipe	70

Outdoor Unit Lineup

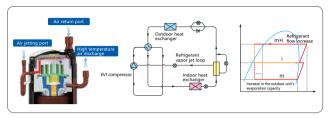
		HP	3	4	4.5	5	6	6.5	7	8	9	10	12	14
	Independent TIMS-DST/DSA	TIMOS enc. 72 								•	•	•	•	•
	Modular TIMS-DXT/DXA									•		•	•	
Air cooled - Heat pump	Side discharge TIMS-CSREA									•		•	•	
	Top discharge TIMS-CSRYA	TIMBS erex of H								•		•	•	•
	Mini VRF-TIMS- CSREC		•	•	•	•	•	•	•	•	•			
Air cooled - Cooling only	TIMS-CXC									•		•	•	•

Single unit

Modular units

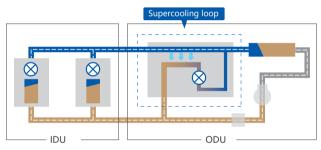
Outdoor Unit Lineup

		НР	16	18	20	22	24	26	28	30	32	34	26.49	48-102
	Independent TIMS-DST/DSA	TIM38 ercc ercc	•	•	•	•	•	•	•	•	•	•	30-40	40-102
	Modular TIMS-DXT/DXA	TIMSS	•	•	•	•	•	•	•	•	•	•	•	•
Air cooled - Heat pump	Side discharge TIMS-CSREA													
	Top discharge TIMS-CSRYA	TIMSS enc. orill	•											
	Mini VRF-TIMS- CSREC													
Air cooled - Cooling only	TIMS-CXC		•	•	•	•	•	•	•	•	•	•	•	


Single unit

Modular units

High Efficiency


High Efficiency Enhanced Vapor Injection(EVI)Compressor

The enhanced vapor injection DC inverter compressor increases refrigerant circulation and improves both cooling and heating capacity.

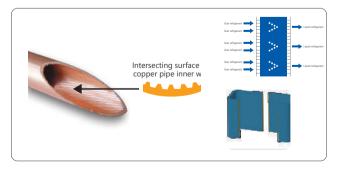
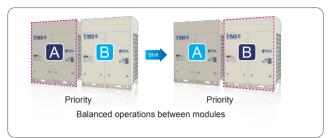
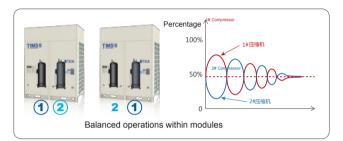

Two Stage Subcooling

Plate Heat Exchanger as a secondary intercooler boosts up refrigerant subcooling, achieving 12°C stage-1 subcooling, and 20°C stage-2 subcooling. The total subcooling degree reaches 32°C.

High Efficiency double C-Type Heat Exchanger

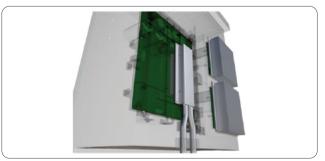

- High efficiency copper pipe with internal thread
- Corrugated fins with openings ,increasing heat exchanging area 15%.
- Specially designed TWO-TO-ONE refrigerant loop, decreasing refrigerant flow resistance.
- Double C type heat exchanger with 6 sides heat exchanging.



High Reliability

Duty Cycling

Duty cycling equalizes the running time of the outdoor units in a multiple-unit system and of the compressors in each unit,significantly extending compressor lifespan.


8-Stage Oil Return

Eight stages oil return technology ensure safe and reliable running of the system and achieve 99.99% oil return.

- Compressor internal oil separation and return technology
- Staged oil storage
- Speed-difference cyclone-type centrifugal oil separation
- Equal-resistance gas-liquid separator
- No oil balance pipe
- Smart oil balance design
- Precise oil return control
- Dual-mode intelligent oil return control

Micro-HEX technology

With the innovative Micro-HEX refrigerant-cooling scheme and the unique aluminum board heat dissipation technology, the temperature difference between the IPM module and the refrigerant (usually 30~55°C) can be reduced to less than 5°C, guaranteeing the stable and safe running of the control system.

Back-up Operation

• Compressor back-up

When one of the ODU compressors is faulty, the other compressor can start emergency operation.

• Frequency converter back-up

When one of the ODU frequency converter is faulty, the other one can start emergency operation.

• Fan back-up

When one of the ODU fans is faulty, the other fan can start emergency operation.

Sensor back-up

Equipped with 28 sets sensors + 7 sets VR sensors. When one sensor is faulty, can be replaced with other sensors.

17	•18		
		6 28 3 5 16	

• Unit back-up

For a modular unit, when one of the ODU is faulty, the other ODU can start emergency operation.

Electrical Components Highly Integrated Design

Multiple electrical components are integrated into a single board, the integrated design can reduce the wiring connections greatly, making the electrical wiring more simple and reliable.

Precise detection of refrigerant pressure

The high/low pressure sensor is used to monitor the system refrigerant pressure in real time and make sure that the pressure perfectly fit the DC inverter module, thus guaranteeing more stable operation of the unit.

Multiple Protection Function

Multiple protection function, such as safe ground protection, voltage protection, temperature protection, current protection, pressure protection, compressor overload protection, motor overheat protection, etc., ensuring the system consistently safe and reliable operation.

Auto Snow-blowing Function

The innovatively designed auto snow-blowing function enables the outdoor unit to prevent the accumulation of snow by itself.

The innovatively designed dust-clean function enables the outdoor unit to prevent the dust by itself.

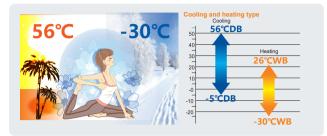
Anti-corrosion Protection

• To meet the requirements in severe conditions with high humidity and high level of salt fog in places near seas and rivers, TICA ODU casing adopts thickened sheet metal and multiple advanced spraying techniques to effectively improve the corrosion resistance performance and extend the service life of the air conditioning unit.

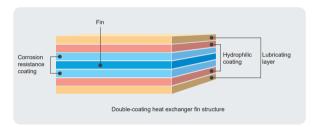
Screws / bolts / gaskets 500h of neutral salt mist

Fan motor Standard :300h of neutral salt mist Special: 500h of neutral salt mist

Wide Operation Range


Wide Capacity Range

TICA VRF has an extensive capacity ranging from 3HP to 102HP, meeting all customer requirements from small to large buildings.



Wide Temperature Range

With an ultra-wide operating range of the ODU (cooling: -5°C to +56°C; heating: -30°C to +26°C), the unit can flexibly respond to the changing outdoor temperature with enhanced stability and applicability.

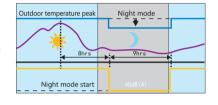
• The corrosion-resistant layer can effectively slow down the corrosion of heat exchanger by corrosive gases. Thanks to the hydrophilic layer, frosting is less likely to happen during heating operation of the air conditioner, and the drainage during defrosting is more convenient. The lubricating layer can break the surface tension of water, speed up the dropping of condensing water or frostturned water.

• The IDU panel passed the anti-aging test. This ensures that, in everyday use, the panel does not age under strong UV, high temperature, or high humidity conditions.

Wide Range of Indoor Units

TICA provides 16 types and more 170 models of VRF indoor units to meet varied customer requirements in a wide range of locations including offices, shopping malls, hospitals and cinemas.

Enhanced Comfort


Advanced Silent Technology

16 professional noise reduction technologies

- 1 High-efficiency low-noise DC inverter compressor
- 2 Stepless brushless DC motor
- 3 Motor bracket with off-resonance framer
- Unique air injection noise reduction
- 5 Omni-directional acoustical enclosure
- 6 New guide ring
- 750mm large fan
- 8 Refrigerant flow noise reduction

3 silent modes

Night silent mode Forced silent mode Smart silent mode

Intelligent Defrosting Technology

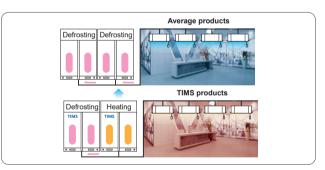
TCC defrosting

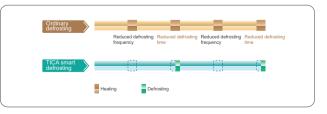
The innovative TCC defrosting technology of TICA adopts the non-stop method for defrosting. Modular units do not need to switch to the cooling mode for defrosting in winter. (patent No.: ZL 2013 2 0344961.5)

Smart defrosting/defrosting self-adapting

Temperature sensors and pressure sensors in the system can effectively reduce the times of defrosting, prolong the heating period, and improve the heating efficiency. The defrosting duration can be shortened to 3 to 5 minutes.

Anti-frosting at the bottom


The ice water mixture at the bottom of unit can be completed removed during defrosting in heating mode in winter, so as to avoid impact on the heating capacity, improve the unit stability, and shorten the defrosting duration by 30%.


- 9 Low noise priority mode
- 10 Three silent modes: Smart/Night/Forced Silent
- 11 Compressor jet loop noise reduction
- 180° sine wave control for quiet operation of compressor
- (13) 3D simulation pipe vibration reduction
- 14 Streamlined air outlet grille
- 15 ODU casing anti-vibration design
- 16 Fan anti-vibration with CFD

Multiple Priority Modes

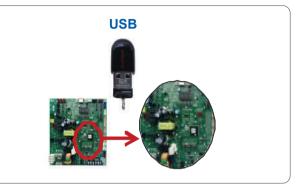
Multiple priority modes settings, provide more freedom and convenience to match the customer needs.

Auto Addressing

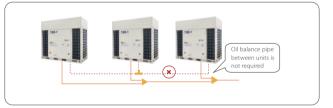
Outdoor units can distribute addresses to indoor units automatically. Remote and wired controllers can be used to guery or modify each indoor unit's address.

Maintenance Fucntion

The maintenance function allows the shutdown of some indoor units without shutting down the whole VRF system. the maintenance function can be activated on site during maintenance period as the remaining indoor units continue to operate.


Four-Way Piping Connection

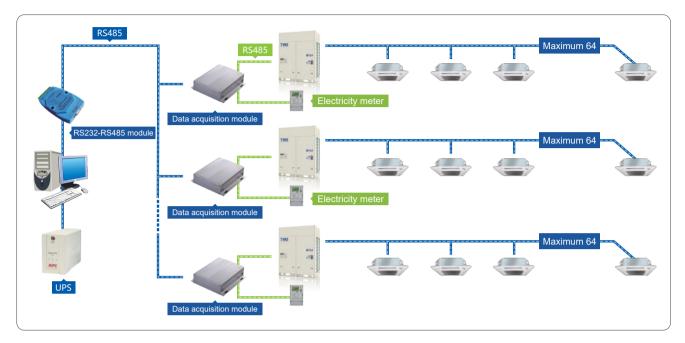
A four-direction space is available for connecting pipes in various installation sites.


Black Box Technology

The professional "black box" data saving device is provided to store data related to unit operation of up to ten years. In this way, data can be read conveniently during aftersales maintenance and debugging. Program upgrade can be intelligently completed by directly inputting the control program to the black box through relevant ports.

Oil Balance Pipe Not Required

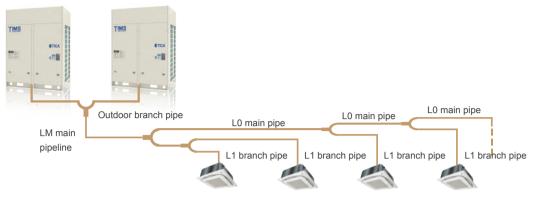
With the new oil management system, there is no need of oil balance pipe.


High External Static Pressure

The static pressure of the outdoor unit can be up to 110Pa which facilitates installation of the unit on each floor of high-rise building or on balconies.

Household-Based Charging System

For large apartments, hotels, multi-storey tenants, TICA can provide professional electricity billing system, according to the operation of indoor and outdoor machines, electronic valve opening and other information, to achieve scientific and reasonable data division.



Intelligent Interlocking For Hotels

Hotel door card can be selected in the application scenarios such as hotels. When the door card is inserted, the IDU can be controlled freely; when the door card is removed, the IDU is turned off automatically after a delay, making hotel management convenient and saving power.

ODU main pipe and IDU branch pipe are selected based on the specifications table. When longer pipes are required, refer to the installation manual.

Main pipeline design for modular series

Total Capacity (kW) of Downstream IDUs	Liquid Pipe Specifications (mm)	Gas Pipe Specifications (mm)	Branch pipe selection
X<16.8	φ9.52	φ15.88	TBP4022TA
16.8≤X<22.5	φ9.52	φ19.05	TBP4022TA
22.5≤X<33.0	φ9.52	φ22.23	TBP4033TA
33.0≤X<46.0	φ12.7	φ25.40	TBP4072TA
46.0≤X<67.0	φ15.88	φ28.58	TBP4072TA
67.0≤X<94.0	φ19.05	φ31.75	TBP4073TA
94.0≤X<114.0	φ19.05	φ34.92	TBP4073TA
114.0≤X<140.0	φ19.05	φ38.1	TBP4073TA
140.0≤X<197.0	φ19.05	φ41.3	TBP4073TA
X≥197.0	φ22.23	φ44.5	TBP4285TA

Main pipeline design for independent series

Total Capacity (kW) of Downstream IDUs	Liquid Pipe Specifications (mm)	Gas Pipe Specifications (mm)	Branch pipe selection
X<16.8	φ9.52	φ15.88	TBP4022TA
16.8≤X<22.5	φ9.52	φ19.05	TBP4022TA
22.5≤X<33.0	φ9.52	φ22.23	TBP4033TA
33.0≤X<46.0	φ12.7	φ25.40	TBP4072TA
46.0≤X<67.0	φ15.88	φ28.58	TBP4072TA
67.0≤X<94.0	φ19.05	φ31.75	TBP4073TA
X≥94.0	φ19.05	φ34.92	TBP4073TA

Indoor Units VRF indoor units

Fresh Air Processing Unit 100% fresh air supply

Ventilation Heat recovery ventilator (HRV)

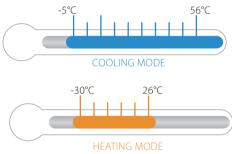
AHU Connection Kit Connect to TICA DX AHU

Control Systems Smart control systems

TIMS Ark Series Heat Pump

Optimized design for small to large buildings

- Enhanced Vapor Injection (EVI) Compressor
- High Efficiency Double C-Shape Heat Exchanger
 ESP up to 110Pa
 - Two Stage Subcooling
- Eight Stage Oil Return
- Multi Silent Technologies
- Duty Cycling
- Auto Addressing
- Backup Operation
- Multi Protectior
- Anti-Corrosion
- Micro-HEX Technology
- TCC defrost with non-stop
- Auto Snow-blowing Function
- Dust-clean Function
- Precise detection of refrigerant pressure
- Black Box Technology
- **BMS**
- Household-based charging system
 - Intelligent Interlocking for Hotels


Wide Capacity Range

Starting at 8HP, capacity increases in 2HP increments up to 102HP.

Wide Operating Temperature Range

TIMS Ark VRF can operate stably in a wide ambient temperature range: from -5°C to 56°C in cooling mode and from -30°C to 26°C in heating mode.

Long Piping Capability

Piping length	Capabllity (m)
Maximum actual single piping length	200 m
Maximum equivalent single piping length	240 m
Maximum piping (total)	1100 m
Maximum height difference of IDU and ODU	110 m
Maximum height difference of IDUs	30 m
Maximum allowed length pipe after the first branch pipe	90 m*

*Check relevant technical documents or consult technicians.

	Model					TIMS140DXT			TIMS200DXT	TIMS220DX
	HP		8	10	12	14	16	18	20	22
	pination type		-	-	-	-	-	-	-	-
Power s	,	V/N/Hz				380-415/				
	Capacity	kW	25.2	28.5	33.5	40.0	45.0	50.4	56.0	61.5
*1 Cooling	Power input	kW	5.45	6.75	8.40	10.25	12.10	13.50	15.77	17.75
	EER	1	4.62	4.22	3.99	3.90	3.72	3.73	3.55	3.46
	Capacity	kW	27.0	31.5	37.5	45.0	50.0	56.0	63.0	69.0
*2 Heating	Power input	kW	5.41	6.60	8.30	10.28	12.15	13.60	15.50	16.99
	COP	/	4.99	4.77	4.52	4.38	4.12	4.12	4.06	4.06
Connectable	Total capacity	kW			50	%-130% of out	door unit cana	city		
indoor unit	Total capacity	KVV			50	/8-130 /8 01 0ut		City		
Compressors	Туре	1				DC In	verter			
Compressors	Quantity	1	1	1	1	1	1	1	1	1
Fan motors	Туре	/				D	С			
Fairmolois	Quantity	1	1	1	1	1	1	1	1	1
Airflow	rate	m³/h		12000			13980		258	300
Net dimensior	ns (W*D*H)	mm		930×860×1690)	1	1240×860×169	0	1500×86	60×1690
Packed dimensi	, ,	mm		995×925×1870			1305×925×187		1562×92	
Sound press	, ,	dB(A)	56	56	57	59	60	61	62	62
Cound press	Liquid pipe	mm	φ9		φ12.70		φ12.70	51		5.88
Pipe connections			φ22				φ28.58		· · ·	
Nat ····	Gas pipe	mm			φ25.40	200		200		3.58
Net we	•	kg	225	225	225	290	290	290	345	350
Gross w		kg	240	240	240	305	305	305	360	365
Refrigerant	Туре	1				R4 ⁻	-			
	Factory charge	kg	8	8	10	12	12	12	16	16
Operating	Cooling	°C					-56			
emperature range	Heating	°C				-30	~26			
3 Maximum fuse	MFA	A	20.0	25.0	32.0	40.0	40.0	50.0	50.0	63.0
			20.0	25.0	52.0	40.0	40.0	50.0	50.0	03.0
current	MFA									
			17.4	21.7	25.9	33.0	35.0	30.1	13.5	47.5
current	MCA	A	17.4	21.7	25.8	33.0	35.0	39.1	43.5	47.5
current * 3 Minimum line current	MCA									
current * 3 Minimum line current	MCA Model		TIMS200DXA	TIMS220DXA	TIMS240DXA	TIMS260DXA	TIMS280DXA	TIMS300DXA	TIMS320DXA	TIMS340DX
current * 3 Minimum line current	MCA									
current * 3 Minimum line current	MCA Model		TIMS200DXA	TIMS220DXA	TIMS240DXA	TIMS260DXA	TIMS280DXA	TIMS300DXA	TIMS320DXA	TIMS340D)
current * 3 Minimum line current	MCA Model HP pination type		TIMS200DXA 20	TIMS220DXA 22	TIMS240DXA	TIMS260DXA	TIMS280DXA 28 -	TIMS300DXA	TIMS320DXA	TIMS340D>
current * 3 Minimum line current Comt	MCA Model HP pination type	A	TIMS200DXA 20	TIMS220DXA 22	TIMS240DXA	TIMS260DXA 26 -	TIMS280DXA 28 -	TIMS300DXA	TIMS320DXA	TIMS340D)
current * 3 Minimum line current Comt	MCA Model HP pination type upply	A V/N/Hz	TIMS200DXA 20 -	TIMS220DXA 22 -	TIMS240DXA 24 -	TIMS260DXA 26 - 380-415/	TIMS280DXA 28 - /3/50(60)	TIMS300DXA 30 -	TIMS320DXA 32 -	TIMS340D) 34 -
current * 3 Minimum line current Comt Power s	MCA Model HP bination type upply Capacity	A V/N/Hz kW	TIMS200DXA 20 - 56.0	TIMS220DXA 22 - 61.5	TIMS240DXA 24 - 68.5	TIMS260DXA 26 - 380-415/ 73.5	TIMS280DXA 28 - /3/50(60) 78.5	TIMS300DXA 30 - 85.0	TIMS320DXA 32 - 90.0	TIMS340D) 34 - 95.2
current * 3 Minimum line current Comt Power s	MCA Model HP Dination type upply Capacity Power input EER	A V/N/Hz kW kW /	TIMS200DXA 20 - 56.0 16.00 3.50	TIMS220DXA 22 - 61.5 17.87 3.44	TIMS240DXA 24 - 68.5 18.60 3.68	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75	TIMS300DXA 30 - 85.0 22.85 3.72	TIMS320DXA 32 - 90.0 24.65 3.65	TIMS340D> 34 - 95.2 25.75 3.70
current * 3 Minimum line current Comt Power s *1 Cooling	MCA Model HP Dination type upply Capacity Power input EER Capacity	A V/N/Hz kW kW / kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0	TIMS220DXA 22 - 61.5 17.87 3.44 69.0	TIMS240DXA 24 - 68.5 18.60 3.68 75.0	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5	TIMS300DXA 30 - 85.0 22.85 3.72 95.0	TIMS320DXA 32 - 90.0 24.65 3.65 100.0	TIMS340DX 34 - 95.2 25.75 3.70 106.0
current * 3 Minimum line current Comt Power s	MCA Model HP bination type upply Capacity Power input EER Capacity Power input	A V/N/Hz kW kW / kW kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15	TIMS340D> 34 - 95.2 25.75 3.70 106.0 25.60
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating	MCA Model HP Dination type upply Capacity Power input EER Capacity	A V/N/Hz kW kW / kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0	TIMS220DXA 22 - 61.5 17.87 3.44 69.0	TIMS240DXA 24 - 68.5 18.60 3.68 75.0	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5	TIMS300DXA 30 - 85.0 22.85 3.72 95.0	TIMS320DXA 32 - 90.0 24.65 3.65 100.0	TIMS340D) 34 - 95.2 25.75 3.70 106.0
current * 3 Minimum line current Comt Comt Fower s *1 Cooling *2 Heating Connectable	MCA Model HP bination type upply Capacity Power input EER Capacity Power input	A V/N/Hz kW kW / kW kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60 4.26	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26	TIMS300DXA 30 - 22.85 3.72 95.0 23.05 4.12	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15	TIMS340D> 34 - 95.2 25.75 3.70 106.0 25.60
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity	A V/N/Hz kW kW kW kW / kW kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60 4.26	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa	TIMS300DXA 30 - 22.85 3.72 95.0 23.05 4.12	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating Connectable	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type	A V/N/Hz kW kW kW kW / kW kW / kW	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60 4.26 50	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating Connectable indoor unit	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity	A V/N/Hz kW kW / kW / kW / kW / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60 4.26	TIMS260DXA 26 - 380-415/ 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capar verter 2	TIMS300DXA 30 - 22.85 3.72 95.0 23.05 4.12	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type	A V/N/Hz kW kW / kW / kW / kW / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 D	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2
current * 3 Minimum line current Comt Comt Fower s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity	A V/N/Hz kW kW / kW / kW / kW / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2	TIMS240DXA 24 - 68.5 18.60 3.68 75.0 17.60 4.26 50	TIMS260DXA 26 - 380-415/ 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capar verter 2	TIMS300DXA 30 - 22.85 3.72 95.0 23.05 4.12 city 2 2	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14
current * 3 Minimum line current Comt Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity	A V/N/Hz kW kW / kW / kW / kW / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 D	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2
current * 3 Minimum line current Comt Comt Fower s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity rate	A V/N/Hz kW kW / kW / kW / kW / / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 D	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2	TIMS300DXA 30 - 22.85 3.72 95.0 23.05 4.12 city 2 2	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2
current * 3 Minimum line current * 3 Minimum line current I Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airflow	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity rate Is (W*D*H)	A V/N/Hz kW kW / kW / kW / kW / / / / / / / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 25800	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 D	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 2 27000 1900×860×169	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 2	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airflow Net dimensior Packed dimensi	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity rate Is (W*D*H) ons (W*D*H)	A V/N/Hz kW kW / kW / kW / kW / / kW / / / / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 5800 500×860×169 562×925×187	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 2 27000 1900×860×169 1965×925×187	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 2 0 0	TIMS340D2 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity ate (W*D*H) ons (W*D*H) sure level	A V/N/Hz kW kW / kW / kW / kW / / kW / / m ³ /h mm dB(A)	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 25800 500×860×169 562×925×187 62	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 D	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 63	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 2 27000 1900×860×169 1965×925×187 64	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 2	TIMS340D2 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity Type Quantity is (W*D*H) ons (W*D*H) sure level Liquid pipe	A V/N/Hz kW kW / kW / kW / kW / / kW / / m ³ /h mm dB(A) mm	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 500×860×169 562×925×187 62 φ15.88	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 - C 2 - - - - - - - - - - - - -	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 2 0 0	TIMS340D2 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 65 φ19.05
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections	MCA Model HP ination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity is (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe	A V/N/Hz kW kW / kW kW / kW / kW / kW / m ³ /h mm mm dB(A) mm	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 25800 500×860×169 562×925×187 62 φ15.88 φ28.58	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 62	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 63 φ3	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64	TIMS340D2 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 4.14 5 φ19.05 φ34.92
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Cos (W*D*H) Cos	A V/N/Hz kW kW / kW / kW / kW / / kW / / m ³ /h mm dB(A) mm kg	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 500×860×169 562×925×187 62 φ15.88 φ28.58 380	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 0 62 380	TIMS260DXA 26 - 380-415 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 0 2 0 4.29 0 0 10 0 0 10 0 0 0 0 0 0 0 0 0 0 0 0 0	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 63 φ3 470	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 4.14 - - - - - - - - - - - - -
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Typ	A V/N/Hz kW kW / kW / kW / kW / / kW / / kW / / m / / / / m m dB(A) mm kg kg kg	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 25800 500×860×169 562×925×187 62 φ15.88 φ28.58	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62	TIMS260DXA 26 - 380-415 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 0 62 460 475	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 63 φ3 470 485	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 2 4.14 3 4.14 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14 3 4.14
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we Gross w	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity Type Quantity is (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight reight Type	A V/N/Hz kW kW / kW / kW / / / / / / / / / / / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62 380 395	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62 380 395	TIMS260DXA 26 - 380-415/ 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 62 62 62 460 475 R4	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capar verter 2 C 2 63 (011) (03) (03) (04) (04) (05) (TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470 485	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 65 φ19.05 φ34.92 475 490
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type	A V/N/Hz kW kW / kW / kW / kW / / kW / / m ³ /h mm dB(A) mm kg kg kg / / kg	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 2 500×860×169 562×925×187 62 φ15.88 φ28.58 380	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 0 62 380	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 62 62 62 460 475 R4'	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 63 (011 (03) 470 485 10A 22	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 4.14 - - - - - - - - - - - - -
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we Gross w	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity Type Quantity is (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight reight Type	A V/N/Hz kW kW / kW / kW / / / / / / / / / / / / /	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62 380 395	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62 380 395	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 62 62 62 460 475 R4'	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capar verter 2 C 2 63 (011) (03) (03) (04) (04) (05) (TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470 485	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 65 φ19.05 φ34.92 475 490
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Fan motors Packed dimensior Packed dimensior Packed dimensior Packed dimensior Net we Gross w Refrigerant Operating	MCA Model HP pination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Cas pipe Type Factory charge	A V/N/Hz kW kW / kW / kW / kW / / kW / / m ³ /h mm dB(A) mm kg kg kg / / kg	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62 380 395	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62 380 395	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 Modelson 62 62 62 460 475 R4' 18 -5~	TIMS280DXA 28 - (3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 63 (011 (03) 470 485 10A 22	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470 485	TIMS340D) 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 65 φ19.05 φ34.92 475 490
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Fan motors Packed dimensior Packed dimensior Packed dimensior Packed dimensior Refrigerant Operating temperature range	MCA Model HP ination type upply Capacity Power input EER Capacity Power input COP Total capacity Power input COP Total capacity Type Quantity Type Coling Heating	A V/N/Hz kW kW / kW / kW / / / / / / / / / / / mm dB(A) mm kg kg / kg / kg C °C	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 2 1 62 380 395 16	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395 16	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 2 0 0 0 62 380 395 16	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 63 φ3 470 485 10A 22 -56 ~26	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485 22	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 0 0 64 470 485 22	TIMS340DX 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 2 2 4.14 - - - - - - - - - - - - -
current * 3 Minimum line current * 3 Minimum line current Comt Power s *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Fan motors Packed dimensior Packed dimensior Net dimensior Net we Gross w Refrigerant	MCA Model HP bination type upply Capacity Power input EER Capacity Power input COP Total capacity Type Quantity Type Quantity Type Quantity Type Quantity Type Quantity Sure level Liquid pipe Gas pipe ight reight Type Cooling	A V/N/Hz kW kW / kW / kW / kW / m ³ /h mm dB(A) mm kg kg kg / kg c °C	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 1 62 1 62 380 395	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 0 0 0 62 380 395	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 Modelson 62 62 62 460 475 R4' 18 -5~	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 C 2 63 (01) (03) 470 485 10A 22 -56	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 2 0 0 64 470 485	TIMS340DX 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 2 2 5 65 (\$19.05 (\$34.92) 475 490
current * 3 Minimum line current * 3 Minimum line current Comt Power s * 1 Cooling * 1 Cooling * 2 Heating Connectable indoor unit Compressors Fan motors Fan motors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Pipe connections Net we Gross w Refrigerant Operating temperature range * 3 Maximum fuse	MCA Model HP ination type upply Capacity Power input EER Capacity Power input COP Total capacity Power input COP Total capacity Type Quantity Type Coling Heating	A V/N/Hz kW kW / kW / kW / / / / / / / / / / / mm dB(A) mm kg kg / kg / kg C °C	TIMS200DXA 20 - 56.0 16.00 3.50 63.0 15.60 4.04 2 2 2 2 2 1 62 380 395 16	TIMS220DXA 22 - 61.5 17.87 3.44 69.0 17.30 3.99 2 200×860×169 562×925×187 62 φ15.88 φ28.58 380 395 16	TIMS240DXA 24 - - 68.5 18.60 3.68 75.0 17.60 4.26 50 2 2 2 2 2 0 0 0 62 380 395 16	TIMS260DXA 26 - 380-415, 73.5 19.27 3.81 81.5 19.01 4.29 %-130% of out DC In 2 DC In 2 0 0 2 0 0 2 0 0 2 0 0 1 0 0 1 0 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	TIMS280DXA 28 - /3/50(60) 78.5 20.95 3.75 87.5 20.55 4.26 door unit capa verter 2 63 φ3 470 485 10A 22 -56 ~26	TIMS300DXA 30 - 85.0 22.85 3.72 95.0 23.05 4.12 city 2 27000 1900×860×169 1965×925×187 64 9.05 1.75 470 485 22	TIMS320DXA 32 - 90.0 24.65 3.65 100.0 24.15 4.14 2 0 0 64 470 485 22	TIMS340DX 34 - 95.2 25.75 3.70 106.0 25.60 4.14 2 2 2 2 2 2 2 4.14 - - - - - - - - - - - - -

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

	Model		TIMS340DXT	TIMS360DXT	TIMS380DXT				TIMS460DXA	TIMS480DX
	HP		34	36	38	40	42	44	46	48
Comb	pination type		18+16	18+18	18+20 (DXT)	20+20 (DXT)	22+20	22+22	24+22	24+24
Power s	upply	V/N/Hz				380-415/	3/50 (60)			
	Capacity	kW	95.4	100.8	106.4	112.0	117.5	123.0	130.0	137.0
*1 Cooling	Power input	kW	25.60	27.00	29.27	31.54	33.87	35.74	36.47	37.20
	EER	/	3.73	3.73	3.64	3.55	3.47	3.44	3.56	3.68
	Capacity	kW	106.0	112.0	119.0	126.0	132.0	138.0	144.0	150.0
*2 Heating	Power input	kW	25.75	27.20	29.10	31.00	33.00	34.60	34.90	35.20
5	COP	1	4.12	4.12	4.09	4.06	4.00	3.99	4.13	4.26
onnectable indoor									-	
unit	Total capacity	kW			50	%-130% of out	door unit capac	ity		
	Туре	/				DC In	verter			
Compressors	Quantity	/	2	2	2	2	4	4	4	4
-	Туре	1				D	С			
Fan motors	Quantity	1	2	2	2	2	4	4	4	4
Airflow		m³/h	13980-		13980+25800	_		25800+25800		
					(1240+1500)					
Net dimensior	is (W*D*H)	mm	(1240+1240)×860×1690	×860×1690		(150	0+1500)×860×	1690	
Packed dimensi	ons (W*D*H)	mm	(1305+1305)×925×1870	(1305+1562) ×925×1870		(156	2+1562)×925×	1870	
Sound press	sure level	dB(A)	65	65	65	65	65	65	65	65
	Liquid pipe	mm	00	00	00	σ φ19		00	00	00
Pipe connections	Gas pipe			(024.02		ψie	.00	(020 10		
N		mm	200+200	φ34.92	200+245	245:245	290/200	φ38.10	200.000	380+380
Net we	<u> </u>	kg	290+290	290+290	290+345	345+345	380+380	380+380	380+380	
Gross w		kg	305+305	305+305	305+360	360+360	395+395	395+395	395+395	395+395
Refrigerant	Туре	/				R41				
- 3	Factory charge	kg	12+12	12+12	12+16	16+16	16+16	16+16	16+16	16+16
Operating	Cooling	°C				-5~				
emperature range	Heating	°C				-30	~26			
3 Maximum fuse current	MFA	А	90.0	100.0	100.0	100.0	113.0	126.0	126.0	126.0
* 3 Minimum line current	MCA	А	74.1	78.2	82.6	87.0	91.0	95.0	100.2	105.4
	Model			TIMS520DXA	TIMS540DXA	TIMS560DXA		TIMS600DXA	TIMS620DXA	TIMS640D)
	HP		50	52	54	56	58	60	62	64
Comt	bination type		24+26	26+26	26+28	28+28	28+30	30+30	30+32	32+32
Power s		V/N/Hz	24.20	20.20	20.20	380-415/		00.00	30.32	02.02
I OWEI S	Capacity	kW	142.0	147.0	152.0	157.0	163.5	170.0	175.0	180.0
*1 Cooling										
*1 Cooling	Power input	kW	37.87	38.54	40.22	41.90	43.80	45.70	47.50	49.30
	EER	/	3.75	3.81	3.78	3.75	3.73	3.72	3.68	3.65
	Capacity	kW	156.5	163.0	169.0	175.0	182.5	190.0	195.0	200.0
*2 Heating	Power input	kW	36.61	38.02	39.56	41.10	43.60	46.10	47.20	48.30
	COP	/	4.27	4.29	4.27	4.26	4.19	4.12	4.13	4.14
onnectable indoor unit	Total capacity	kW			50	%-130% of out	door unit capac	ity		
unit	Туре	1				DC In	verter			
									4	4
Compressors	Quantity	1	4	4	4	4	4	4	4	-
Compressors			4	4	4			4	4	т
	Туре				1	4 D	С			
Compressors Fan motors	Type Quantity	 	4	4	4	4	C 4	4	4	4
Compressors	Type Quantity rate		4 25800+27000 (1500+1900)		1	4 D 4	С	4		
Compressors Fan motors Airflow	Type Quantity rate ns (W*D*H)	/ / / m³/h	4 25800+27000 (1500+1900) ×860×1690 (1562+1965)		1	4 D 4 (190	C 4 2700+27000	4		
Compressors Fan motors Airflow Net dimension Packed dimensi	Type Quantity rate ns (W*D*H) ons (W*D*H)	/ / / m³/h mm	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870	4	4	4 D 4 (190 (196	C 4 2700+27000 0+1900)×860× 5+1965)×925×	4 1690 1870	4	4
Compressors Fan motors Airflow Net dimension	Type Quantity rate is (W*D*H) ons (W*D*H) sure level	/ / / m ³ /h mm dB(A)	4 25800+27000 (1500+1900) ×860×1690 (1562+1965)		1	4 D (190 (196 66	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66	4		
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press	Type Quantity rate is (W*D*H) ons (W*D*H) sure level Liquid pipe	/ / / m³/h mm dB(A) mm	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870	4	4	4 Δ (190 (196 66 φ22	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23	4 1690 1870	4	4
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections	Type Quantity rate Is (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe	/ / / m ³ /h mm dB(A) mm mm	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65	65	65	4 Δ (190 (196 66 φ22 φ41	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30	4 1690 1870 66	66	66
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections Net we	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight	/ / / m ³ /h mm dB(A) mm mm kg	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460	4 65 460+460	4 65 460+470	4 Δ (190 (196 66 φ22 φ41 470+470	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470	4 1690 1870 66 470+470	4 66 470+470	4 66 470+470
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight	/ / / m ³ /h mm dB(A) mm mm	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65	65	65	4 Δ (190 (196 66 φ22 φ41	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30	4 1690 1870 66	66	66
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections Net we Gross w	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight	/ / / m ³ /h mm dB(A) mm mm kg	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460	4 65 460+460	4 65 460+470	4 Δ (190 (196 66 φ22 φ41 470+470	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470 485+485	4 1690 1870 66 470+470	4 66 470+470	4 66 470+470
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections Net we	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight eight	/ // m³/h mm dB(A) mm kg kg	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460	4 65 460+460	4 65 460+470	4 D 4 (190 (196 66 φ22 φ41 470+470 485+485	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470 485+485	4 1690 1870 66 470+470	4 66 470+470	4 66 470+470
Compressors Fan motors Airflow Net dimension Packed dimensi Sound press Pipe connections Net we Gross w	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight eight Type	/ / / m³/h mm dB(A) mm mm kg kg /	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460 395+475	4 65 460+460 475+475	4 65 460+470 475+485	4 D 4 (190 (196 66 φ22 φ41 470+470 485+485 R4	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470 485+485 10A 22+22	4 1690 1870 66 470+470 485+485	4 66 470+470 485+485	4 66 470+470 485+485
Compressors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we Gross w Refrigerant Operating	Type Quantity rate Is (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight eight Type Factory charge Cooling	/ / / / / / / / / / / / / / / / / / // // // // ////	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460 395+475	4 65 460+460 475+475	4 65 460+470 475+485	4 D 4 (190 (196 66 φ22 φ41 470+470 485+485 R4 ² 22+22 -5~	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470 485+485 10A 22+22 56	4 1690 1870 66 470+470 485+485	4 66 470+470 485+485	4 66 470+470 485+485
Compressors Fan motors Airflow Net dimensior Packed dimensi Sound press Pipe connections Net we Gross w Refrigerant	Type Quantity rate as (W*D*H) ons (W*D*H) sure level Liquid pipe Gas pipe ight eight Type Factory charge	/ / / / / / / / / / / / / / / / / / /	4 25800+27000 (1500+1900) ×860×1690 (1562+1965) ×925×1870 65 380+460 395+475	4 65 460+460 475+475	4 65 460+470 475+485	4 D 4 (190 (196 66 φ22 φ41 470+470 485+485 R4 ² 22+22	C 4 2700+27000 0+1900)×860× 5+1965)×925× 66 .23 .30 470+470 485+485 10A 22+22 56	4 1690 1870 66 470+470 485+485	4 66 470+470 485+485	4 66 470+470 485+485

Notes:

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

	Model			TIMS660DXA	TIMS	680DXA	TIMS700DXA	TIMS720D	XA	TIMS740D>	(A		
	HP			66		68	70	72		74			
(Combinatior	n type		32+34	3	4+34	22+24+24	24+24+24	1	24+24+26	i		
Po	ower supply		V/N/ Hz				380-415	5/3/50 (60)					
		Capacity	kW	185.2	1	90.4	198.5	205.5		210.5			
*1 Coo	ling	Power input		50.40		51.50	55.07	55.80		56.47			
		EER	1	3.67		3.70	3.60	3.68		3.73			
		Capacity	kW	206.0		12.0	219.0	225.0		231.5			
*2 Hea	ting	Power input		49.75		51.20	52.50	52.80		54.21			
		COP	/	4.14		4.14	4.17	4.26		4.27			
Connectable	indoor unit	Total capacity	kW				50%-130% of ou		city				
Compre	ssors	Туре	/					nverter					
		Quantity	1	4		4	6	6		6			
Fan mo	otors	Туре	1		1			DC		-			
		Quantity	/	4	07000	4	6	6		6			
	Airflow rate	*D*!!!	m³/h		27000	200		5800+25800		25800+258000+258000+258000+258000+258000+258000+258000+258000+2580000000000			
	ensions (W	,	mm	(1900+1900	·			1500)×860×1690		0+1500+1900)×			
	imensions (mm dD(A)	(1965+1965)*925*1	66	66	1562)×925×1870) (150	2+1562+1965)× 66	925×1870		
	d pressure le	Liquid pipe	dB(A)) 00		00		22.23		00			
Pipe conn	ections	Gas pipe	mm mm	(04)	1.30		ψ2	.2.23	φ44.50	1.50			
	Net weight	Oas pipe	kg	470+475	1	5+475	380+380+380	380+380+3		380+380+460			
	ross weight		kg	485+490		0+490	395+395+395	395+395+3		380+380+460 395+395+475			
0	rooo weigin	Туре	/	1001100	10	0.100		110A		395+395+475			
Refrige	rant	Factory											
- 5-		charge	kg	22+23	2	3+23	16+16+16	16+16+16	6	16+16+18			
Operating ter	nperature	Cooling	°C			I	-5	~56					
rang		Heating	°C				-30	0∼26					
* 3 Maximum f	use current	MFA	A	170.0	1	80.0	189.0	189.0		206.0			
* 3 Minimum I	ine current	MCA	A	146.1	1	48.2	152.9	158.1		171.4			
	Model			TIMS760DXA		TIMOTOODYA							
							TIMS800DXA	TIMS820DXA	TIMS840DXA	TIMS860DXA	TIMS880DXA		
	HP					TIMS780DXA 78		TIMS820DXA 82	TIMS840DXA 84	TIMS860DXA 86	TIMS880DXA 88		
Co	HP	vpe		76 24+26+26		78 26+26+26	TIMS800DXA 80 26+26+28	82 26+26+30	TIMS840DXA 84 26+26+32	TIMS860DXA 86 28+28+30	TIMS880DXA 88 28+30+30		
	HP mbination t	ype V/N/	'Hz	76		78	80 26+26+28	82 26+26+30	84	86	88		
	HP	V/N/		76		78	80	82 26+26+30	84	86	88		
	HP ombination t er supply	V/N/ ity kV	V	76 24+26+26		78 26+26+26	80 26+26+28 380-415/3	82 26+26+30 3/50 (60)	84 26+26+32	86 28+28+30	88 28+30+30		
Powe	HP ombination t er supply Capaci	V/N/ ity kV nput kV	V V	76 24+26+26 215.5		78 26+26+26 220.5	80 26+26+28 380-415/3 225.5	82 26+26+30 3/50 (60) 232.0	84 26+26+32 237.0	86 28+28+30 242.0	88 28+30+30 248.5		
Powe	HP ombination t er supply Capaci Power ir	V/N/ ity kV nput kV	V V	76 24+26+26 215.5 57.14		78 26+26+26 220.5 57.81	80 26+26+28 380-415/3 225.5 59.49	82 26+26+30 3/50 (60) 232.0 61.39	84 26+26+32 237.0 63.19	86 28+28+30 242.0 64.75	88 28+30+30 248.5 66.65		
Powe	HP ombination tr er supply Capaci Power in EER	V/N/ ity kV nput kV / ity kV	V V	76 24+26+26 215.5 57.14 3.77		78 26+26+26 220.5 57.81 3.81	80 26+26+28 380-415/3 225.5 59.49 3.79	82 26+26+30 3/50 (60) 232.0 61.39 3.78	84 26+26+32 237.0 63.19 3.75	86 28+28+30 242.0 64.75 3.74	88 28+30+30 248.5 66.65 3.73		
Powe	HP ombination t er supply Capaci Power ir EER Capaci	V/N/ ity kV nput kV / ity kV nput kV	V V	76 24+26+26 215.5 57.14 3.77 238.0		78 26+26+26 220.5 57.81 3.81 244.5	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0	84 26+26+32 237.0 63.19 3.75 263.0	86 28+28+30 242.0 64.75 3.74 270.0	88 28+30+30 248.5 66.65 3.73 277.5		
Powe *1 Cooling *2 Heating Connectable	HP ombination t er supply Capaci Power ir EER Capaci Power ir	V/N/ ity kV nput kV / ity kV nput kV /	V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23	86 28+28+30 242.0 64.75 3.74 270.0 64.15	88 28+30+30 248.5 66.65 3.73 277.5 66.65		
Power *1 Cooling *2 Heating Connectable indoor unit	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap	V/NJ ity kV nput kV ity kV ity kV nput kV nacity kV	V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23	86 28+28+30 242.0 64.75 3.74 270.0 64.15	88 28+30+30 248.5 66.65 3.73 277.5 66.65		
Powe *1 Cooling *2 Heating Connectable	HP ombination t er supply Capaci Power ir Capaci Power ir COP	V/NJ ity kV ipput kV ity kV ity kV ity kV acity kV	V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23	86 28+28+30 242.0 64.75 3.74 270.0 64.15	88 28+30+30 248.5 66.65 3.73 277.5 66.65		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap	V/NJ ity kV pput kV ity kV pput kV acity kV acity kV ty /	V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 5	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit verter 6	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16		
Power *1 Cooling *2 Heating Connectable indoor unit	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Total cap Quanti	V/NJ ity kV nput kV / ity kV / nput kV / acity kV / / / / /	V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 5	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit verter 6	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors	HP ombination t er supply Capaci Power ir Capaci Power ir COP Total cap Total cap Quanti Type	V/NJ ity kV nput kV / ity kV / nput kV / acity kV / / / / /	V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6	000	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 door unit capacit rerter 6	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y	86 28+28+30 64.75 3.74 270.0 64.15 4.21 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airff	HP ombination t er supply Capaci Power ir Capaci Power ir COP Total cap Total cap Quanti Type Quanti	V/NJ ity kV hput kV ity kV ity kV put kV / acity kV / ty / ty / ty / m ³	V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6		78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit verter 6 2 6 27000+270	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y	86 28+28+30 64.75 3.74 270.0 64.15 4.21 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airff	HP probination t er supply Capaci Power ir EER Capaci Power ir COP Total capa Type Quanti Type Quanti ow rate sions (W*D*	V/NJ ity kV nput kV ity kV nput kV ity kV acity kV ty / ty / ity kV ' / acity kV ' / 'ty / 'ty / ''H) mi	V V V V V V V V /h m (1	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 6 25800+27000+270	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit verter 6 27000+270 (1900+1900+19	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 6 000+27000	86 28+28+30 64.75 3.74 270.0 64.15 4.21 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6		
Power *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airfl Net dimen Packed dime	HP probination t er supply Capaci Power ir EER Capaci Power ir COP Total capa Type Quanti Type Quanti ow rate sions (W*D*	V/NJ ity kV nput kV ity kV nput kV ity kV ity kV ity kV ity kV ity / acity kV ity / ity / ity / ity / ity / ity / m ^a min D*H) min	V V V V V V V V /h m (1 m (1	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 6 25800+27000+270 (500+1900)+86	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit verter 6 27000+270 (1900+1900+19	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690	86 28+28+30 64.75 3.74 270.0 64.15 4.21 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6		
Power *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airfl Net dimen Packed dime	HP probination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Type Quanti Type Quanti ow rate sions (W*D*	V/NJ ity kV nput kV ity kV nput kV ity kV ity kV ity kV ity / acity kV ity / ith) mi D*H) mi	V V V V V /h m (1 m (1 A)	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+270 (500+1900+1900)×86 (562+1965+1965)×92	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0%	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit rerter 6 27000+27((1900+1900+19 (1965+1965+19 66	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6		
Power *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airfl Net dimen Packed dime	HP problemation transformed power in EER Capaci Power in COP Total capa Type Quanti Type Quanti Type Quanti ow rate sions (W*D* ressure lever	V/NJ ity kV nput kV ity kV nput kV ity kV nput kV ity kV ity kV ity / ity / </td <td>V V V V V (h m (1 m (1 A) m</td> <td>76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+270 (500+1900+1900)×86 (562+1965+1965)×92</td> <td>0×1690</td> <td>78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6</td> <td>80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0% 6 6</td> <td>82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 Noor unit capacit verter 6 2 7000+27((1905+1965+19 66 23</td> <td>84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870</td> <td>86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6</td> <td>88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6</td>	V V V V V (h m (1 m (1 A) m	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+270 (500+1900+1900)×86 (562+1965+1965)×92	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0% 6 6	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 Noor unit capacit verter 6 2 7000+27((1905+1965+19 66 23	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airff Net dimen Packed dime Sound pi Pipe connections Net	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap. Type Quanti Type Quanti Type Quanti ow rate sions (W*D* ressure leve Liquid p Gas pij weight	V/NJ ity kV nput kV ity kV nput kV ity kV nput kV ity kV ity kV ity / ity / </td <td>V V V V V V V V V V V V V V V V V V V</td> <td>76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+270 (500+1900+1900)×86 (562+1965+1965)×92</td> <td>0×1690</td> <td>78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6</td> <td>80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 00 6 02 66 φ22 φ44</td> <td>82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 Noor unit capacit verter 6 2 7000+27((1905+1965+19 66 23</td> <td>84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870</td> <td>86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6</td> <td>88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6</td>	V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+270 (500+1900+1900)×86 (562+1965+1965)×92	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 00 6 02 66 φ22 φ44	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 Noor unit capacit verter 6 2 7000+27((1905+1965+19 66 23	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airff Net dimen Packed dime Sound pi Pipe connections Net Gros	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap. Type Quanti Type Quanti Type Quanti ow rate sions (W*D* ressure leve Liquid p Gas pij weight s weight	V/NJ ity kV nput kV ity kV ity kV acity kV ity kV ity kV ity kV ity kV ity / ith) min D*H) min pe min pe min kg kg	V V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 5 6 6 6 6	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 00 6 6 6 460 460 460+460+470 475+475+485	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 Accelent and a construction of the second	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870 66	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airff Net dimen Packed dime Sound pi Pipe connections Net	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Total cap Total cap Type Quanti Type Quanti Sions (W*D* ensions (W*D* ressure leve Liquid p Gas pij weight s weight Type	V/NJ, ity kV ipput dB(ippe ippe mm ippe mm kg kg ippe kg	V V V V V V V V V V V V V V V V V V V 1 V V 1 V V 1 V V 1 V V 1 V V 1 V V 1 V V 1 V 1	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 6 6 6 6 460+460+460 475+475+475	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0% 6 0% 66 460 460 460 460+460+470 475+475+485 R41	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 door unit capacit rerter 6 27000+27((1900+1900+19 (1965+1965+19 66 23 .50 460+460+470 475+475+485 0A	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 9 6 6 000+27000 000)×860×1690 000)×860×1690 065)×925×1870 66 460+460+470 475+475+485	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 6 470+470+470 485+485	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 6 470+470+470 485+485+485		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Airff Net dimen: Packed dime Sound pi Pipe connections Net Gros Refrigerant	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Total cap Total cap Quanti Type Quanti Ow rate sions (W*D* ensions (W*D* ensions (W*D* tessure leve Liquid p Gas pij weight s weight Type Factory ch	V/Nu ity kV nput kV ity kV ity kV acity kV acity kV ity ity acity kV ity / acity kV ity / ity	V V V V V V V V V V V V V (1 n (1 A) (1) (1 A) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900+1900)×86 1562+1965+1965)×92 66	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 5 6 6 6 6 6 6 460+460+460	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outo DC Inv 6 0% 6 00 6 00 6 00 460 460 460+460+470 475+475+485 R41 18+18+22	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 boor unit capacit rerter 6 27000+270 (1900+1900+19 (1965+1965+19 66 23 50 460+460+470 475+475+485 0A 18+18+22	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 065)×925×1870 66 460+460+470	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 470+470+470	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 470+470+470		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airff Net dimen Packed dime Sound pi Pipe connections Net Gros	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap. Type Quanti Type Quanti Type Quanti ow rate sions (W*D* ensions (W*D* ressure leve Liquid p Gas pij weight s weight Type Factory ch Coolin	V/NJ ity kV ity / acity kV ity / ith) min De*H) min pe min pe min ipe min pe min pe min g /	V V V V V V V V V V V (1 n (1 A) n n n n n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 6 6 6 6 460+460+460 475+475+475	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 DC Inv 6 00 6 00 6 00 460+460+470 475+475+485 R41 18+18+22 -5~	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit retter 6 27000+27((1900+1900+19 (1965+1965+195 66 23 50 460+460+470 475+475+485 0A 18+18+22 56	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 9 6 6 000+27000 000)×860×1690 000)×860×1690 065)×925×1870 66 460+460+470 475+475+485	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 470+470+470 485+485	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 6 470+470+470 485+485+485		
Powe *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airff Net dimen Packed dime Sound p Pipe connections Net Gros Refrigerant Operating	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Total cap Total cap Quanti Type Quanti Ow rate sions (W*D* ensions (W*D* ensions (W*D* tessure leve Liquid p Gas pij weight s weight Type Factory ch	V/NJ ity kV ity / acity kV ity / ith) min De*H) min pe min pe min ipe min pe min pe min g /	V V V V V V V V V V V (1 n (1 A) n n n n n 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 6 6 6 6 460+460+460 475+475+475	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outo DC Inv 6 0% 6 00 6 00 6 00 460 460 460+460+470 475+475+485 R41 18+18+22	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit retter 6 27000+27((1900+1900+19 (1965+1965+195 66 23 50 460+460+470 475+475+485 0A 18+18+22 56	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 9 6 6 000+27000 000)×860×1690 000)×860×1690 065)×925×1870 66 460+460+470 475+475+485	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 470+470+470 485+485	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 6 470+470+470 485+485+485		
Power *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airff Net dimen Packed dimen Packed dimen Pipe connections Net Gross Refrigerant Operating temperature	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap. Type Quanti Type Quanti Type Quanti ow rate sions (W*D* ensions (W*D* ressure leve Liquid p Gas pij weight s weight Type Factory ch Coolin	V/Nu ity kV acity kV ity / acity kV ity /	V V V V V V V V V V V V V V V V V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 6 6 6 6 460+460+460 475+475+475	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 DC Inv 6 00 6 00 6 00 460+460+470 475+475+485 R41 18+18+22 -5~	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit retter 6 27000+27((1900+1900+19 (1965+1965+195 66 23 50 460+460+470 475+475+485 0A 18+18+22 56	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 9 6 6 000+27000 000)×860×1690 000)×860×1690 065)×925×1870 66 460+460+470 475+475+485	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 6 470+470+470 485+485	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 6 470+470+470 485+485+485		
Power *1 Cooling *2 Heating Connectable indoor unit Compressors Fan motors Fan motors Airff Net dimen Packed dimen Sound pi Pipe connections Net Gross Refrigerant Operating temperature range * 3 Maximum	HP ombination t er supply Capaci Power ir EER Capaci Power ir COP Total cap Total cap Quanti Type Quanti Ow rate sions (W*D* ensions (W*D* tressure leve Liquid p Gas pij weight s weight Type Factory ch	V/Nu ity kV nput kV ity kV nput kV ity kV nput kV ity kV acity kV ity / acity kV ity / ity <t< td=""><td>V V V V</td><td>76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475 16+18+18</td><td>0×1690</td><td>78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 460 460 460 460 460 460</td><td>80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0% 6 0% 66 460 460 460+460+470 475+475+485 R41 18+18+22 -5∽ -30~</td><td>82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit rerter 6 27000+270 (1905+1965+19 66 23 50 460+460+470 475+475+485 0A 18+18+22 256</td><td>84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 000)×860×1690 005)×925×1870 66 460+460+470 475+475+485 18+18+22</td><td>86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 470+470+470 485+485+485 22+22+22</td><td>88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 470+470+470 485+485+485 22+22+22</td></t<>	V V V V	76 24+26+26 215.5 57.14 3.77 238.0 55.62 4.28 6 6 25800+27000+27(1500+1900)×86 1562+1965+1965)×92 66 380+460+460 395+475+475 16+18+18	0×1690	78 26+26+26 220.5 57.81 3.81 244.5 57.03 4.29 50 6 6 6 460 460 460 460 460 460	80 26+26+28 380-415/3 225.5 59.49 3.79 250.5 58.57 4.28 0%-130% of outd DC Inv 6 0% 6 0% 66 460 460 460+460+470 475+475+485 R41 18+18+22 -5∽ -30~	82 26+26+30 3/50 (60) 232.0 61.39 3.78 258.0 61.07 4.22 loor unit capacit rerter 6 27000+270 (1905+1965+19 66 23 50 460+460+470 475+475+485 0A 18+18+22 256	84 26+26+32 237.0 63.19 3.75 263.0 62.17 4.23 y 6 6 000+27000 000)×860×1690 000)×860×1690 005)×925×1870 66 460+460+470 475+475+485 18+18+22	86 28+28+30 242.0 64.75 3.74 270.0 64.15 4.21 6 6 6 6 6 6 470+470+470 485+485+485 22+22+22	88 28+30+30 248.5 66.65 3.73 277.5 66.65 4.16 6 6 6 6 6 6 6 470+470+470 485+485+485 22+22+22		

Notes:

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

I	Nodel		TIMS900DXA	TIMS920DXA	TIMS940DXA	TIMS960DXA	TIMS980DXA	TIMS1000DXA	TIMS1020DXA
	HP		90	92	94	96	98	100	102
Combi	ination type		30+30+30	30+30+32	30+32+32	32+32+32	32+32+34	32+34+34	34+34+34
Power su	upply	V/N/Hz				380-415/3/50 (60)			
	Capacity	kW	255.0	260.0	265.0	270.0	275.2	280.4	285.6
*1 Cooling	Power input	kW	68.55	70.35	72.15	73.95	75.05	76.15	77.25
	EER	/	3.72	3.70	3.67	3.65	3.67	3.68	3.70
	Capacity	kW	285.0	290.0	295.0	300.0	306.0	312.0	318.0
*2 Heating	Power input	kW	69.15	70.25	71.35	72.45	73.90	75.35	76.80
	COP	/	4.12	4.13	4.13	4.14	4.14	4.14	4.14
Connectable indoor unit	Total capacity	kW			50%-13	0% of outdoor unit o	capacity		
Compressors	Туре	/				DC Inverter			
Compressors	Quantity	/	6	6	6	6	6	6	6
Fan motors	Туре	/				DC			
Fail motors	Quantity	/	6	6	6	6	6	6	6
Airflow	rate	m³/h			2	7000+27000+2700	0		
Net dimension	s (W*D*H)	mm			(1900	+1900+1900)×860>	(1690		
Packed dim (W*D*		mm			(1965	+1965+1965)×925>	(1870		
Sound press	ure level	dB(A)	66	66	66	66	66	66	66
Pipe	Liquid pipe	mm				φ22.23			
CONNECTIONS	Gas pipe	mm				φ44.50			
Net we	ight	kg	470+470+470	470+470+470	470+470+470	470+470+470	470+470+475	470+475+475	475+475+475
Gross w	eight	kg	485+485+485	485+485+485	485+485+485	485+485+485	485+485+490	485+490+490	490+490+490
	Туре	/							
Refrigerant	Factory charge	kg	22+22+22	22+22+22	22+22+22	22+22+22	22+22+23	22+23+23	23+23+23
Operating	Cooling	°C				-5~56			
temperature range	Heating	°C				-30~26			
* 3 Maximum fuse current	MFA	А	240.0	240.0	240.0	240.0	250.0	260.0	270.0
* 3 Minimum line current	MCA	А	210.3	212.2	214.1	216.0	218.1	220.2	222.3

Notes:

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

Independent Full Inverter ODUs

Moc	lel		TIMS080DST	TIMS100DST	TIMS120DST	TIMS140DST	TIMS160DST	TIMS180DST	TIMS200DST	TIMS220DST
HF	5		8	10	12	14	16	18	20	22
Combinat	ion type		-	-	-	-	-	-	-	-
Power supp	ly	V/N/Hz			1	380-415	/3/50 (60)			
	Capacity	kW	25.2	28.5	33.5	40.0	45.0	50.4	56	61.5
*1 Cooling	Power input	kW	5.45	6.75	8.40	10.25	12.10	13.50	15.77	17.75
-	EER	/	4.62	4.22	3.99	3.90	3.72	3.73	3.55	3.46
	Capacity	kW	27.0	31.5	37.5	45.0	50.0	56.0	63.0	69.0
*2 Heating	Power input	kW	5.41	6.60	8.30	10.28	12.15	13.60	15.50	16.99
	COP	1	4.99	4.77	4.52	4.38	4.12	4.12	4.06	4.06
Connectable indoor unit	Total capacity	kW			50	%-130% of out	door unit capa	city		
0	Туре	1				DC Ir	iverter			
Compressors	Quantity	1	1	1	1	1	1	1	1	1
Fan motors	Туре	1		DC						
Fairmotors	Quantity	1	1	1	1	1	1	1	1	1
Airflow rate	9	m³/h		12000			13980		25	800
Net dimensions (V	V*D*H)	mm		930×860×1690)	1	240×860×169	0	1500×8	60×1690
Packed dimensions	(W*D*H)	mm		995×925×1870)	1	305×925×1870	0	1562×9	25×1870
Sound pressure	level	dB(A)	56	56	57	59	60	61	62	62
Pipe connections	Liquid pipe	mm	φ9	.52	φ12.70		φ12.70		φ1	5.88
Pipe connections	Gas pipe	mm	φ22	2.23	φ25.40		φ28.58		φ28	3.58
Net weight		kg	225	225	225	290	290	290	345	350
Gross weigh	nt	kg	240	240	240	305	305	305	360	365
Refrigerant	Туре	1	R410A	R410A	R410A	R410A	R410A	R410A	R410A	R410A
Reingerant	Factory charge	kg	8	8	10	12	12	12	16	16
Operating temperature	Cooling	°C				-5	~56			
range	Heating	°C				-30	~26			
* 3 Maximum fuse current	MFA	A	20.0	25.0	32.0	40.0	40.0	50.0	50.0	63.0
* 3 Minimum line current	MCA	A	17.4	21.7	25.8	33.0	35.0	39.1	43.5	47.5

Мос	lel		TIMS220DSA	TIMS240DSA	TIMS260DSA	TIMS280DSA	TIMS300DSA	TIMS320DSA	TIMS340DSA		
HF	2		22	24	26	28	30	32	34		
Combinat	ion type		-	-	-	-	-	-	-		
Power supp	ly	V/N/Hz		380-415/3/50 (60)							
	Capacity	kW	61.5	68.5	73.5	78.5	85.0	90.0	95.2		
*1 Cooling	Power input	kW	17.87	18.60	19.27	20.95	22.85	24.65	25.75		
	EER	/	3.44	3.68	3.81	3.75	3.72	3.65	3.70		
	Capacity	kW	69.0	75.0	81.5	87.5	95.0	100.0	106.0		
*2 Heating	Power input	kW	17.30	17.60	19.01	20.55	23.05	24.15	25.60		
	COP	/	3.99	4.26	4.29	4.26	4.12	4.14	4.14		
Connectable indoor unit Total capacity k					50%-130	% of outdoor unit	capacity				
	Туре	/				DC Inverter					
Compressors	Quantity	/	2	2	2	2	2	2	2		
For motors	Туре	/									
Fan motors	Quantity	/	2	2	2	2	2	2	2		
Airflow rate	9	m³/h	258	25800 27000							
Net dimensions (V	V*D*H)	mm	1500×80	60×1690		1900×860×1690					
Packed dimensions	(W*D*H)	mm	1562×92	1562×925×1870 1965×925×					70		
Sound pressure	level	dB(A)	62	62	62	63	64	64	65		
Pipe connections	Liquid pipe	mm	φ15	5.88		φ19.05					
Pipe connections	Gas pipe	mm	φ28	3.58		φ31	.75		φ34.92		
Net weight		kg	375	375	450	460	460	460	465		
Gross weigh	nt	kg	390	390	465	475	475	475	480		
Defrigerent	Туре	/	R410A	R410A	R410A	R410A	R410A	R410A	R410A		
Refrigerant	Factory charge	kg	14	14	16	20	20	20	21		
Operating temperature	Cooling	°C				-5~56					
range	Heating	°C				-30~26					
* 3 Maximum fuse current	MFA	A	63.0	63.0	80.0	80.0	80.0	80.0	80.0		
* 3 Minimum line current	MCA	A	47.5	52.7	66.0	68.0	70.1	72.0	74.0		

Notes:

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

Indoor Units VRF indoor units

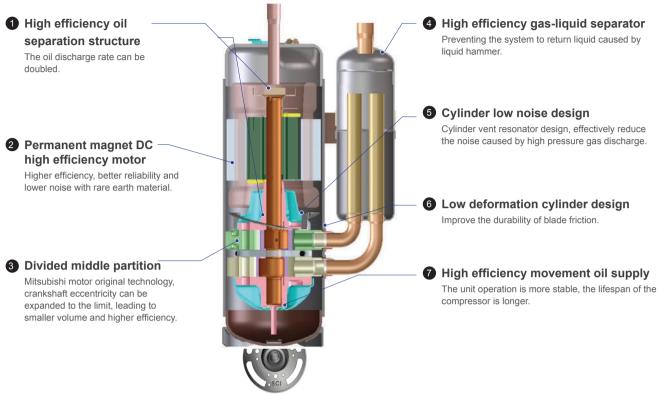
Fresh Air Processing Unit 100% fresh air supply

Ventilation Heat recovery ventilator (HRV)

AHU Connection Kit Connect to TICA DX AHU

Control Systems Smart control systems

TIMS Extra Series Heat Pump


Optimized design for middle-sized <u>buildings</u>

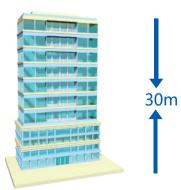
Side-discharge and Top-discharge Options

- Twin rotary DC inverter compressor
- ESP up to 110Pa (Top-discharge units only)
- Two Stage Subcooling
- Six Stage Oil Return
- Multi Silent Technologies
- Auto Addressing
- Multi Protection
- Anti-Corrosion
- Micro-HEX Technology
- Dust-clean Function
- Precise detection of refrigerant pressure
- Black Box Technology
- BMS
- Household-based charging system
 - Intelligent Interlocking for Hotels(Top-discharge units only)

DC inverter compressor

All series units adopt Mitsubishi twin rotary compressor with many Mitsubishi patented technologies.

Wide Capacity Range


TIMS Extra has two options, side-discharge and top-discharge. For side-discharge type, it has three models, 25.2/28.5/33.5kW. For top-discharge type, it has five models, 25.2/28.5/33.5/40.0/45.0kW.

Side discharge type	Top disch	narge type		
25.2/28.5/33.5kW	25.2/28.5/33.5kW	40.0/45.0kW		
	TIMSS etick	TIMES enc.		

Long Piping Capability

Maximum piping (total)	1100m
Maximum equivalenFsingle piping length	240m
Maximum height difference of IDU and ODU	110m
Maximum height difference of IDUs	30m

* Check relevant technical document or consul technicians.

Side Discharge VRF

1	Model		TIMS252CSREA	TIMS285CSREA	TIMS335CSREA			
	HP		8	10	12			
Comb	ination type		-	-	-			
Power sup	ply	V/N/Hz		380-415/3/50 (60)				
	Capacity	kW	25.2	28.5	33.5			
*1 Cooling	Power input	kW	5.99	7.65	8.25			
	EER	1	4.21	3.73	4.06			
	Capacity	kW	27	31.5	37.5			
*2 Heating	Power input	kW	5.85	7.45	7.95			
	COP	1	4.62	4.23	4.72			
Connectable indoor unit	Total capacity	kW	ţ	50%-130% of outdoor unit capacity				
0	Туре	1		Twin rotary				
Compressors	Quantity	1	1	1	1			
Far maters	Туре	1		DC				
Fan motors	Quantity	1	2	2	2			
Airflow ra	te	m³/h	11300					
Net dimensions	(W*D*H)	mm	1100×464×1550					
Packed dimension	is (W*D*H)	mm						
Sound pressur	re level	dB(A)	58	59	60			
D '	Liquid pipe	mm	φ1	2.70	φ12.70			
Pipe connections	Gas pipe	mm	φ2	22.2	φ25.40			
Net weig	ht	kg	168	168	168			
Gross wei	ght	kg	175	175	175			
Definition	Туре	1	R410A	R410A	R410A			
Refrigerant	Factory charge	kg	7	7	8			
Operating temperature	Cooling	°C		-5~54				
range	Heating	°C		-23~26				
3 Maximum fuse current	MFA	A	32.0	32.0	32.0			
* 3 Minimum line current	MCA	A	25.2	25.8	26.5			

Note: 1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0°C DB/ 19.0°C WB; outdoor temperature of 35°C DB. 2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0°C DB; outdoor temperature of 7°C DB./ 6.0°C WB. 3. Fuse or circuit breaker is selected based on MFA. Electrical wiring is selected based on MCA.

Top Discharge VRF

	Model		TIMS252CSRYA	TIMS285CSRYA	TIMS335CSRYA	TIMS400CSRYA	TIMS450CSRYA			
	HP		8	10	12	14	16			
Comb	ination type		-	-	-	-	-			
Power sup	ply	V/N/Hz		380-415/3/50 (60)						
	Capacity	kW	25.2	28.5	33.5	40.0	45.0			
*1 Cooling	Power input	kW	5.55	6.85	8.70	10.40	12.30			
	EER	1	4.54	4.16	3.85	3.85	3.66			
	Capacity	kW	27.0	31.5	37.5	45.0	50.0			
*2 Heating	Power input	kW	5.60	6.70	8.40	10.35	12.20			
	COP	1	4.82	4.70	4.46	4.35	4.10			
Connectable indoor unit	Total capacity	kW		50%-13	0% of outdoor unit	capacity				
0	Туре	1			Twin rotary					
Compressors	Quantity	1	1	1 1 1		1	1			
- · ·	Туре	1		DC						
Fan motors	Quantity	1	1	1	1	1	1			
Airflow ra	te	m³/h		12000		13	980			
Net dimensions	(W*D*H)	mm		930×860×1690		1240×8	60×1690			
Packed dimension	is (W*D*H)	mm		995×925×1870		1305×9	25×1870			
Sound pressu	re level	dB(A)	57	57	57	60	61			
D 's second to second	Liquid pipe	mm		1	φ12.70	•				
Pipe connections	Gas pipe	mm		φ25.40		φ28.58	φ28.58			
Net weig	ht	kg	204	204	204	269	269			
Gross wei	ght	kg	212	212	212	277	277			
Definition	Туре	1	R410A	R410A	R410A	R410A	R410A			
Refrigerant	Factory charge	kg	8	8	8	12	12			
Operating temperature	Cooling	°C			-5~54					
range	Heating	°C			-23~26					
* 3 Maximum fuse current	MFA	A	32	32	32	40	40			
* 3 Minimum line current	MCA	A	27.5	28.1	28.66	33	35			

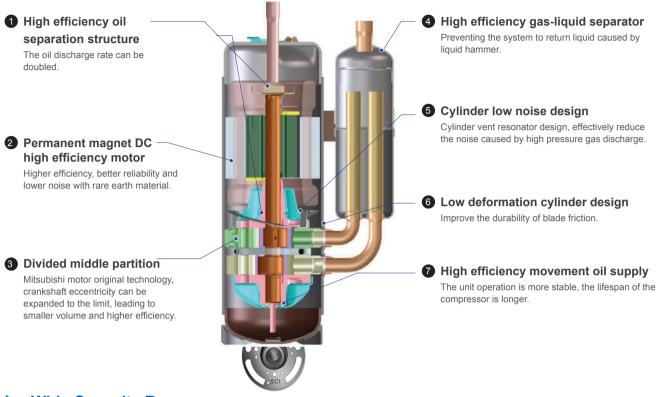
Note: 1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0°C DB/ 19.0°C WB; outdoor temperature of 35°C DB. 2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0°C DB; outdoor temperature of 7°C DB./ 6.0°C WB. 3. Fuse or circuit breaker is selected based on MFA. Electrical wiring is selected based on MCA.

Indoor Units VRF indoor units

Ventilation Heat recovery ventilator (HRV)

Control Systems Smart control systems

AHU Connection Kit Connect to TICA DX AHU

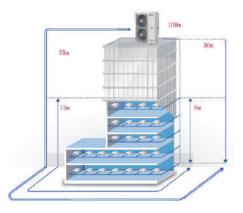

VRF Mini Series Heat Pump

Optimized design for small buildings

- Capacity Up to 22.4kw
- Connectable Indoor Units Quantity up to 11
- Micro-HEX technology
- Oil return without shutdown
- Intelligent defrosting technology
- Advanced silence technology
- Compact, easy installation

DC inverter compressor

All series units adopt Mitsubishi twin rotary compressor with many Mitsubishi patented technologies.


• Wide Capacity Range

	Mini series	
8kW	10-16kW	18-22.4kW

Long Piping Capability

Maximum actual length of single pipe	50m
Maximum equivalent length of single pipe	75m
Maximum total equivalent pipe length	100m
Maximum drop of indoor/ outdoor unit	30m
Maximum drop of indoor unit	8m
Maximum permitted length after first branch	15m*

* Pls consult the detailed technical documentation or other matters with the relative technicists.

Compact design

Compact design with three-side heat exchanger, can be easily installed in a small space such as a bay window.

Intelligent Defrosting

The patented defrosting technology of TICA can increase the refrigerant circulation flow during defrosting, which will shorten the defrosting time and cut down the power consumption.

Oil Return On Heating Operation Without Shutdown

TICA adopt on-demand oil return and high/low frequency switchover oil return to prevent wild fluctuation of indoor temperature, and provide user with more comfortable experience.

Mini VRF Specification

Mod	el		TIMS080CSREC	TIMS100CSREC	TIMS112CSREC	TIMS125CSREC	TIMS140CSREC		
Power supply	т	V/N/Hz			220-240/1/50(60)				
	Capacity	kW	8.0	10.0	11.2	12.5	14.0		
*1 Cooling	Power input	kW	2.19	2.55	2.92	3.45	3.76		
	EER	/	3.65	3.92	3.84	3.62	3.72		
	Capacity	kW	9.0	11.5	12.5	13.5	16.0		
*2 Heating	Power input	kW	2.15	2.60	3.01	3.46	3.87		
	COP	/	4.19	4.42	4.15	3.90	4.13		
Connectable indoor unit	Total capacity	kW		50%-1	30% of outdoor unit c	apacity			
Compressors	Туре	/			Twin rotary				
Compressors	Quantity	/	1	1	1	1	1		
Fan motors	Туре	/			DC				
Fairmotors	Quantity	/	1	1	1	1	1		
Airflow rate		m³/h	3300	3300 4800 5400 5400		5400	6000		
Net dimensions (W	"*D*H)	mm	865×310×700		980×39	90×840			
Packed dimensions (W*D*H)	mm	1010×425×735	1010×425×735 1026×472×863					
Sound pressure l	evel	dB(A)	53	54	55	55	56		
Pipe connections	Liquid pipe	mm			φ9.52				
Pipe connections	Gas pipe	mm			φ15.88				
Net weight		kg	58	74	78	78	84		
Gross weight		kg	68	85	89	89	95		
Refrigerant	Туре	/	R410A	R410A	R410A	R410A	R410A		
Operating temperature	Cooling	°C			-5~54				
range	Heating	°C			-25~27				
* 3 Maximum fuse current	MFA	A	20	20	40	40	40		
* 3 Minimum line current	MCA	A	16	19	32	32	32		

Mod	el		TIMS160CSREC	TIMS180CSREA	TIMS200CSREA	TIMS224CSREA		
Power supply	,	V/N/Hz	220-240/1/50(60)		380-415/3/50(60)			
	Capacity	kW	15.5	18.0	20.0	22.4		
*1 Cooling	Power input	kW	4.80	6.05	6.18	6.66		
	EER	/	3.23	2.98	3.24	3.36		
	Capacity	kW	17.0	20.0	22.0	25.0		
*2 Heating	Power input	kW	4.65	5.75	5.81	6.36		
	COP	/	3.66	3.48	3.79	3.93		
Connectable indoor unit	Total capacity	kW		50%-130% of out	door unit capacity			
Comprosporo	Туре	/		Twin ı	rotary			
Compressors	Quantity	/	1	1	1	1		
Fan motors	Туре	/						
Fait motors	Quantity	/	1	2	2	2		
Airflow rate		m³/h	6000	6000 7200 7200				
Net dimensions (W	*D*H)	mm	980×390×840 980×390×1260					
Packed dimensions (W*D*H)	mm	1026×472×863		1026×472×1287			
Sound pressure I	evel	dB(A)	56	59	59	58		
Pipe connections	Liquid pipe	mm		φ9.	.52			
	Gas pipe	mm	φ15.88		φ19.05			
Net weight		kg	84	125	125	125		
Gross weight		kg	95	136	136	136		
Refrigerant	Туре	/	R410A	R410A	R410A	R410A		
Operating temperature	Cooling	°C		-5~	-54			
range	Heating	°C		-25^	~27			
* 3 Maximum fuse current	MFA	А	40	20	20	20		
* 3 Minimum line current	MCA	А	32	17	17	17		

Notes:

1. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.

2. The nominal heating capacity is measured under the following conditions: indoor temperature of 20.0 °C DB; outdoor temperature of 7.0 °C DB/6.0 °C WB; equivalent refrigerant piping length 10m with zero level difference.

Indoor Units VRF indoor units

Fresh Air Processing Unit 100% fresh air supply

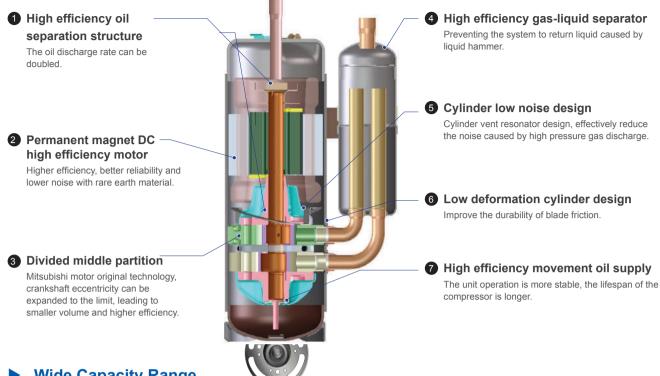
Ventilation Heat recovery ventilator (HRV)

AHU Connection Kit Connect to TICA DX AHU

Control Systems Smart control systems

TIMS Series Cooling Only

Optimized design


 High Efficiency Double C-Shape Heat Exchanger
 ESP up to 110Pa
 Two Stage Subcooling
 Six Stage Oil Return

ESP up to 110Pa Two Stage Subcooling Six Stage Oil Return Multi Silent Technologies Duty Cycling Auto Addressing Backup Operation Multi Protection Anti-Corrosion Micro-HEX Technology Dust-clean Function Precise detection of refrigerant pressure Black Box Technology Combine freely

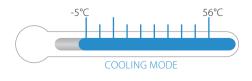
TIMS Series Cooling Only

DC inverter compressor

All series units adopt Mitsubishi twin rotary compressor with many Mitsubishi patented technologies.

Wide Capacity Range

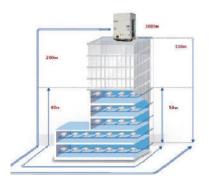
For single unit, the capacity is up to 16HP. For combined units, maximum three 16HP units can be combined with capacity up to 48HP.



Combine freely

TICA cooling only series units can be combined 3 modules freely without any limitation.

Wide Operating Temperature Range


TICA cooling only VRF units can operate stably in a wide ambient temperature range: from -5°C to 55°C.

Long Piping Capability

Max. height difference between IDU and ODU	ODUup : 110m		
Max. height difference between IDO and ODO	ODU down : 90m		
Max. height difference between IDU and IDU	30m		
Max. allowed length pipe after the first branch	40m(90m)		
Max. equivalent single piping length	200m		
Max. total piping length	1000m		

Note: Check relevant technical documents or consult technicians.

Cooling only VRF

N	lodel		TIMS080 CXC	TIMS100 CXC	TIMS120 CXC	TIMS140 CXC	TIMS160 CXC	TIMS180 CXC	TIMS200 CXC	TIMS220 CXC	TIMS 240CXC	TIMS 260CXC
*1 Combinatio	n		-	-	-	-	-	10+8	12+8	12+10	12+12	14+12
Power supply		1					380-4	15 / 3 / 50(6	0)	1		
	Capacity	kW	25.2	28.0	33.5	40.0	45.0	53.2	56.0	61.5	67.0	73.0
*2 Cooling	Power input	kW	5.6	6.9	8.8	10.6	12.5	12.5	13.8	15.7	17.6	19.4
	EER	1	4.5	4.1	3.8	3.8	3.6	4.3	4.1	3.9	3.8	3.8
Connectable	Total capacity	kW				50	1%-130% of	outdoor uni	t capacity			
indoor unit	Max. quantity	/	14	16	19	19	22	31	33	34	34	36
Compressors	Туре	1					D	C inverter				
Compressors	Quantity	1	1	1	1	1	1	2	2	2	2	2
	Туре	/						DC				
Fan motors	Quantity	1	1	1	1	1	1	2	2	2	2	2
	Max.ESP	Ра						110				
Airflow rate		m³/h	12000			139	980		240		25980	
Net dimension	s (W*D*H)	mm	93	30×860×169	90	1240×860×1690			(930×860×1690)×2			(930×860×1690)+ (1240×860×1690)
Packed diment (W*D*H)	sions	mm	99	90×920×175	50	1300×92	20×1750	(990×920×1750)×2				(990×920×1750)+ (1300×920×1750)
Sound pressur	e level	dB (A)		57		60	61	59				62
Pipe connections	Liquid pipe	mm			φ1	2.7			φ15.88			φ19.05
	Gas pipe	mm		φ25.4				φ2	8.6			φ31.75
Net weight		kg	220	220	220	290	290	440	440	440	440	510
Gross weight		kg	235	235	235	305	305	455	455	455	455	525
	Туре	1						R410A				
Refrigerant	Factory charge	kg	8	8	9	12	12	16	20	17	18	21
Operating temperature range	Cooling	°C	-5~55°C									
*3 Maximum fuse current	MFA	А	20.0	25.0	32.0	40.0	40.0	45.0	52.0	57.0	64.0	72.0
*3 Minimum line current	MCA	A	17.4	21.7	25.8	33.0	35.0	39.1	43.2	47.5	51.6	58.8

Notes: 1. The combination mode is recommended, and you can choose the combination mode freely.Maximum 3 modules can be combined. 2. The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference. 3. Fuse or circuit breaker is selected based on MFA. Electrical wiring is selected based on MCA.

Cooling only VRF

Ma	del		TIMS280	TIMS300	TIMS320	TIMS340	TIMS360	TIMS380	TIMS400	TIMS420	TIMS440	TIMS460	TIMS480
			СХС	CXC	CXC	CXC	CXC	CXC	CXC	CXC	CXC	CXC	CXC
*1 Combir			14+14	14+16	16+16	12+12+10	12+12+12	14+14+10	14+14+12	14+14+14	16+14+14	16+16+14	16+16+16
Power su	pply	/		1		1	380	-415 / 3 / 50	(60)	1			
	Capacity	kW	80.0	85.0	90.0	95.0	100.5	108.0	113.5	120.0	125.0	130.0	135.0
*2 Cooling	Power input	kW	21.1	23.0	24.9	24.5	26.4	28.0	33.7	31.7	33.6	35.5	37.4
	EER	/	3.8	3.7	3.6	3.9	3.8	3.9	3.4	3.8	3.7	3.7	3.6
Connectable	Total capacity	kW					50%-130%	of outdoor u	init capacity				
indoor unit	Max. quantity	/	38	40	40	42	42	44	46	48	50	52	52
0	Туре	/						DC inverter					
Compressors	Quantity	/	2	2	2	3	3	3	3	3	3	3	3
	Туре	/						DC					
Fan motors	Quantity	1	2	2	2	3	3	3	3	3	3	3	3
Fairmotors	Max. ESP	Ра		1		1	110				L		
Airflow r	ate	m³/h		27960		360	000	399	960	41940	41940	41940	41940
Net dimen (W*D*		mm	(124	0×860×169	0)×2	(930×860	(930×860×1690)×3 (930×860×1690)+ (1240×860×1690)×2				(1240×860)×1690)×3	
Packed dim (W*D*		mm	(130	0×920×175	0)×2	(990×920	(990×920×1750)×3 (990×920×1750)+ (1300×920×1750)×2				(1300×920)×1750)×3	
*3 Sound pres	sure level	dB (A)	62	63	63	60	60	63	63	63	64	64	64
Pipe	Liquid pipe	mm		1		1		φ19.05	1	1	1		
connections	Gas pipe	mm		φ31.75			φ34.92				φ38.1		
Net wei	ght	kg	580	580	580	660	660	780	780	870	870	870	870
Gross we	eight	kg	595	595	595	675	675	795	795	885	885	885	885
	Туре	1						R410A					
Refrigerant	Factory charge	kg	24	24	24	26	27	32	33	36	36	36	36
Operating temperature range	Cooling	°C	-5~55°C										
*3 Maximum fuse current	MFA	А	80.0	80.0	80.0	89.0	96.0	105.0	112.0	120.0	120.0	120.0	120.0
*3 Minimum line current	MCA	А	66.0	68.0	70.0	73.0	77.4	87.7	91.8	99.0	101.0	103.0	105.0

Notes:

The combination mode is recommended, and you can choose the combination mode freely.Maximum 3 modules can be combined.
 The nominal cooling capacity is measured under the following conditions: indoor temperature of 27.0 °C DB/19.0 °C WB; outdoor temperature of 35.0 °C DB; equivalent refrigerant piping length 10m with zero level difference.
 Fuse or circuit breaker is selected based on MFA. Electrical wiring is selected based on MCA.

Indoor unit

Al

Inoor Unit Lineup

ł	٢W	1.5	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0	9.0	10.0
One-way Cassette					•		•		•		•		•			
Two-way Cassette					•		•		•		•		•	•		
Round Flow Cassette					•		•		•	•	•	•	•	•	•	•
Compact Round Flow Cassette		•	•		•		•		•	•						
Slim Duct			•	•	•	•	•	•	•	•	•	•	•			
Medium Static Pressure Duct			•	•	•	•	•	•	•	•	•	•	•	•	•	•
High Static Pressure Duct																•
Wall Mounted	······································				•		•	•			•					
Ceiling & Floor					•		•				•		•		•	
Full Fresh Air Handling Unit																

DC motor
 AC motor

A DECEMBER OF THE OWNER OWNER OF THE OWNER OWNER

Inoor Unit Lineup

ŀ	Ŵ	11.2	12.5	14.0	16.0	20.0	25.0	28.0	33.5	40.0	45.0	50.0	56.0	61.5
One-way Cassette														
Two-way Cassette														
Round Flow Cassette		•	•	•	•									
Compact Round Flow Cassette														
Slim Duct														
Medium Static Pressure Duct		•	•	•	•									
High Static Pressure Duct		•	•	•		•	•		•	•	•	•	•	•
Wall Mounted	···													
Ceiling & Floor		•	•	•										
Full Fresh Air Handling Unit				•			•	•			•		•	

DC motor
 AC motor

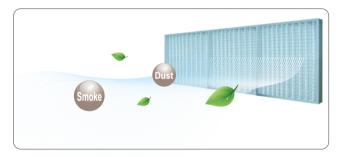
AHU KIT

Model	Setting cooling capacity (HP)	Indoor unit capacity (kW)	reference air volume (m³/h)	Picture
TMDK 056	2	5-6	800	
TMDK 090	4	7-10	1600	
TMDK 180	6	10-20	2500	
TMDK280	8	20~25	3000	
TWDK200	10	25~30	3700	
	12	30~36	4500	
TMDK450	14	36~40	5400	
	16	40~45	6000	
	18	45~50	6800	
	20	50~56	7600	
	22	56~61.5	8400	1 1
TMDK900	24	61.5~67	9000	
INDEADO	26	67~73	9800	
	28	73~78	10600	
	30	78~84	11400	
	32	84~90	12000	

One-way Cassette

COMFORT

Quiet Operation


The compact turbo fan adopts axial air intaking. Small blades ensure even air supply and substantially reduce noise for a quiet and comfort environment.

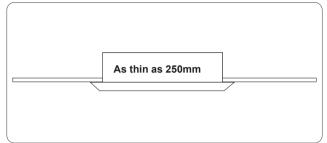
► HEALTH

Exclusive Sterilizing Filter

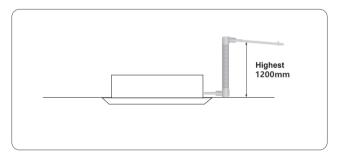
The unique sterilizing filter can effectively filter smog and dust from air, to provide users with fresh air all the time.

► AIR FLOW

Wide air supply outlet


Fan deflector may provide wide range air supply of 10-65°, creating cozy living environment indoors and comfortable feeling of wide angle.

► EASY INSTALLATION


Easy Installation

Body thickness of 250 mm installed in a concealed way to lift the height of the suspended ceiling, especially suitable for ceilings with narrow height.

High-lift Drain Pump

Built-in with a fully-automatic drain pump. Pumping head is up to 1200mm, flexible for drainage pipe design.

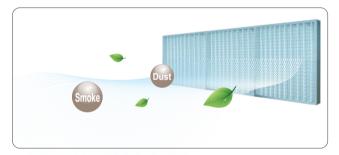
One-way cassette

	Model (TMCS-XX-A)		028	036	045	056	071	
Nomi	nal cooling capacity	kW	2.8	3.6	4.5	5.6	7.1	
Nomi	nal heating capacity	kW	3.2	4.0	5.0	6.3	8.0	
	Power supply	V/N/Hz			220/1/50			
	Motor type	-			AC motor			
No	minal input power	W	40	40	45	45	50	
Dim	nensions (WxDxH)	mm		870×460×250		1180×4	95×290	
Panel	dimensions (WXDxH)	mm 1070×520×33 1380 Milky white					550×33	
	Panel color				Milky white			
	High		510	600	720	910	1000	
Air flow	Medium	m³/h	410	480	570	830	850	
-	Low		310	360	450	700	750	
Sound	pressure level (H/M/L)	dB(A)	36/34/30	36/28/26	42/39/35	45/41/39	47/43/40	
	Weight	kg	25	27	27	39	39	
	Liquid pipe	mm		φ6	.35		φ9.52	
Connecting pipe Dimensions	Gas pipe	mm		φ12	2.70		φ15.88	
Dimensions	Condensate drain pipe	mm	DN20					

Two-way Cassette

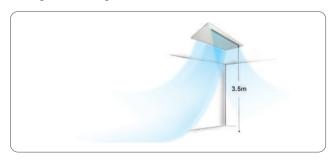
COMFORT

Quiet Operation


The compact turbo fan adopts axial air intaking. Small blades ensure even air supply and substantially reduce noise for a quiet and comfort environment.

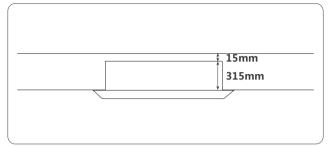
► HEALTH

Exclusive Sterilizing Filter

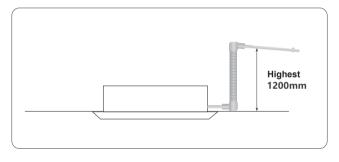

The unique sterilizing filter can effectively filter smog and dust from air, to provide users with fresh air all the time.

► AIR FLOW

Wide air supply outlet


Fan deflector may provide wide range air supply of 10-65°, creating cozy living environment indoors and comfortable feeling of wide angle.

► EASY INSTALLATION


Easy Installation

Body thickness of 250 mm installed in a concealed way to lift the height of the suspended ceiling, especially suitable for ceilings with narrow height.

High-lift Drain Pump

Built-in with a fully-automatic drain pump. Pumping head is up to 1200mm, flexible for drainage pipe design.

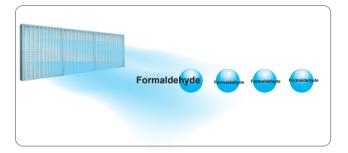
► Two-way cassette

	Model (TMCD-XX-A)		028	036	045	056	071	080	
Nominal	cooling capacity	kW	2.8	3.6	4.5	5.6	7.1	8.0	
Nominal I	neating capacity	kW	3.2	4.0	5.0	6.3	8.0	9.0	
Pov	ver supply	V/N/Hz			220/	1/50			
M	otor type	-			AC n	notor			
Nomina	al input power	W	60	62	68	85	94	98	
Dimens	ions (WxDxH)	mm		970×52	20×315		1210×5	20×315	
Panel dime	ensions (WXDxH)	mm		1176×6	970×520×315 1210×520×315 1176×630×33 1416×630×33 Milky white 1416×630×33				
	Panel color				Milky	white			
	High		500	616	773	900	1165	1300	
Air flow	Medium	m³/h	426	523	657	765	990	1120	
	Low		376	462	580	657	873	980	
Sound pres	sure level (H/M/L)	dB(A)	37/31/25	39/36/32	43/37/31	45/41/39	47/43/40	49/45/42	
,	Weight		32	32	37	37	40	40	
	Liquid pipe	mm		φ6	.35		φ9	.52	
Connecting pipe Dimensions	Gas pipe	mm		φ12	2.70		φ15	5.88	
	Condensate drain pipe		DN20						

Round Flow Cassette

COMFORT

Quiet Operation


The use of aerospace technology on 3D spiral fan blades with optimized air duct design reduces internal resistance of the unit and achieves ultra-quiet operation, creating a comfortable and pleasant environment.

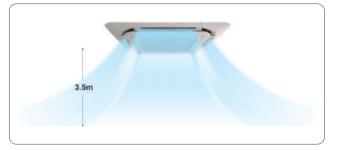
Diffuser	
3D spiral fan blade	

► HEALTH

Health

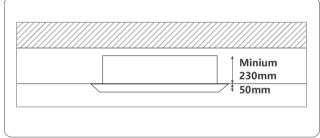
PM2.5, formaldehyde and antibacterial filters are to provide super-clean indoor environment.

► AIR FLOW

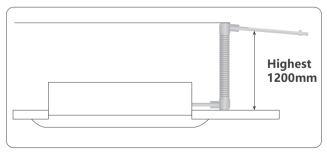

360° Air Flow

360° air flow design features more reasonable airflow distribution and more uniform temperature in the entire room for improved comfort.

High Ceiling Installation


The air supply is not limited by the floor height. The cold air can reach the ground in a room of up to 3.5 m high to achieve optimum air conditioning performance.

EASY INSTALLATION


Compact Size

The height of models 28 to 80 are just 230mm whilst models 90 to 160 are 300mm, making the round flow cassette idea for standard ceilings.

High-lift Drain Pump

Built-in with a fully-automatic drain pump. Pumping head is up to 1200mm, flexible for drainage pipe design.

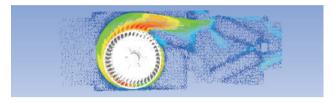
Round flow cassette

				036 045 050 056 063 071 080 090 100 112 125 140 160												
Mode	I (TMCF-XX-AB)		028	036	045	050	056	063	071	080	090	100	112	125	140	160
Nominal coo	ling capacity	kW	2.8	3.6	4.5	5.0	5.6	6.3	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Nominal hea	ating capacity	kW	3.2	4.0	5.0	5.6	6.3	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0	18.0
Power	supply	V/N/Hz							220)/1/50						
Moto	r type	-							AC	motor						
Nominal in	nput power	W	55	55	70	70	75	75	90	90	150	150	150	190	190	210
Dimensior	ns (WxDxH)	mm				840×84	40×230						840×8	340×300		
Panel dimens	ions (WXDxH)	mm							950×	950×50						
	Panel color								Milk	y white						
	High		750								2100					
Air flow	Medium	m³/h	660	690	720	720	780	780	900	1080	1200	1260	1360	1500	1500	1800
	Low	1	540	540	600	600	660	660	690	870	900	1020	1080	1200	1200	1500
Sound pressu	re level (H/M/L)	dB(A)	32/3	0/25		36/3	3/31	·	39/3	6/33		42/39/35		44/4	0/35	44/40/36
We	eight	kg							29.5	32	32					
Quantum	Liquid pipe	mm	m φ6.35 φ9.52													
Connecting pipe	Gas pipe	mm			φ12	2.70						φ1	5.88			
Dimensions	Condensate drain pipe	mm	DN25													

DC round flow cassette

Model	(TMCF-XX-AE	3B)	028	036	045	050	056	063	071	080	090	100	112	125	140	160
Nominal coo	oling capacity	kW	2.8	3.6	4.5	5.0	5.6	6.3	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Nominal hea	ating capacity	kW	3.2	4.0	5.0	5.6	6.3	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0	18.0
Power	r supply	V/N/Hz							220	/1/50						
Moto	or type	-							DC r	notor						
Nominal i	nput power	W	36	36	45	45	45	45	73	73	67	67	88	88	88	130
Dimensior	ns (WxDxH)	mm				840×84	40×230	·	·				840×84	40×300		
	mensions (DxH)	mm							950×9	50×50						
F	Panel color			Milky white												
	High		810	810	960	960	960	960	1020	1200	1500	1500	1800	1800	1800	2100
Air flow	Medium	m³/h	690	690	780	780	780	780	900	900	1200	1200	1500	1500	1500	1800
	Low	Ĩ	540	540	660	660	660	660	690	690	900	900	1200	1200	1200	1500
	essure level /M/L)	dB(A)	32/3	0/25		36/3	3/31		39/3	6/33		42/39/35		44/4	0/35	44/40/36
We	eight	kg	22.5	22.5	24.5	24.5	24.5	24.5	24.5	24.5	29.5	29.5	29.5	29.5	32	32
0	Liquid pipe	mm		·	φ6	.35		<u>.</u>				φ9	.52			
Connecting	Gas pipe	mm			φ12	2.70						φ15	5.88			
pipe Dimensions	Condensate drain pipe	mm		DN25												

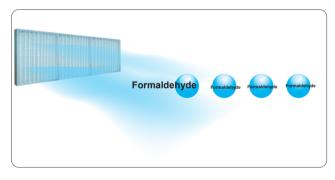
► Compact Round Flow Cassette


Model	(TMCF-XX-AC)		015	022	028	036	045	050					
Nominal coo	ling capacity	kW	1.5	2.2	2.8	3.6	4.5	5.0					
Nominal hea	ating capacity	kW	2.2	2.5	3.2	4.0	5.0	5.6					
Power	supply	V/N/Hz			220/1	/50							
Moto	r type	-			AC m	otor							
Nominal ir	nput power	W	50	50	50	75	75	75					
Dimension	is (WxDxH)	mm			590×59	0×260							
Panel dimens	ions (WXDxH)	mm		680×680×30									
F	Panel color			Milky white									
	High		500	500	500	680	680	680					
Air flow	Medium	m³/h	420	420	420	600	600	600					
	Low	1	350	350	350	490	490	490					
Sound pressur	re level (H/M/L)	dB(A)		36/33/23			42/36/29						
We	eight	kg	16	16	16	18	18	18					
Connectine	Liquid pipe	mm			φ6.	35							
Connecting pipe	Gas pipe	mm	φ12.70										
Dimensions	Condensate drain pipe	mm			DN	25							

Slim Duct

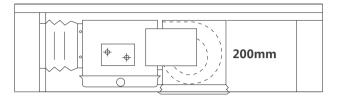
COMFORT

Quiet Operation

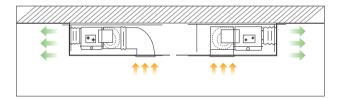

Use the brand-new CFD optimized duct and simulated fan blades to ensure softer air supply, and the auxiliary streamlined embedded foam wiring drain pan lowers noise of eddy current to 23 dB, equal to the normal human breathing sound.

► HEALTH

Health


PM2.5, formaldehyde and antibacterial filters are to provide super-clean indoor environment.

EASY INSTALLATION


Compact Size

Designed with 200 mm thickness, the body is lighter and the installation space required is smaller, making it suitable for more small spaces.

Diversified air return mode

The air return plenum as standard configuration may change air return mode based on the actual circumstances at the site to enable more flexible air return.

High-lift Drain Pump

Built-in with a fully-automatic drain pump. Pumping head is up to 1200mm, flexible for drainage pipe design.

Slim duct

Mode	(TMDN-XX-AC)		022	025	028	032	036	040	045	050	056	063	071
Nominal coc	ling capacity	kW	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1
Nominal hea	ting capacity	kW	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0
Power	supply	V/N/Hz		I			I	220/1/50			I	I	
Moto	r type	-					-	AC motor					
Nominal ir	nput power	w	54	54	54	55	55	55	77	77	77	100	105
Dimension	s (WxDxH)	mm		1	700×4	50×200		1	92	20×450×20	00	1140×4	50×200
	High		500	500 500 500 560 560 560 750 750 920						1000			
Air flow	Medium	m³/h	370	370	370	430	430	430	620	620	620	710	800
	Low	1	310	310	310	360	360	360	550	550	550	590	680
ESP (ad	justable)	Pa						10(30)	1				1
Sound pressur	e level (H/M/L)	dB(A)	33/28/23	33/28/23	33/28/23	33/28/24	33/28/24	33/28/24	35/30/28	35/30/28	35/30/28	36/32/28	37/32/29
We	ight	kg	17.5	17.5	17.5	17.5	17.5	17.5	21.5	21.5	21.5	28	28
	Liquid pipe	mm	φ6.35						φ9.52				
Connecting pipe	Gas pipe	mm		φ9.52					φ12.70				φ15.88
Dimensions	Condensate drain pipe	mm		TO0×450×200 920×450×200 1140×45 500 500 500 560 560 750 750 920 370 370 370 430 430 430 620 620 620 710 310 310 360 360 360 550 550 590 /28/23 33/28/23 33/28/24 33/28/24 33/28/24 35/30/28 35/30/28 36/32/28 17.5 17.5 17.5 17.5 17.5 21.5 21.5 28									

DC Slim duct

Model	(TMDN-XX-ACB)	022	025	028	032	036	040	045	050	056	063	071		
Nominal coc	ling capacity	kW	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1		
Nominal hea	ting capacity	kW	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0		
Power	supply	V/N/Hz						220/1/50							
Moto	r type	-						DC motor							
Nominal in	nput power	W	40	40	40	45	45	50	50	50	50	60	60		
Dimension	s (WxDxH)	mm			700×4	50×200			9	20×450×20	00	1140×4	50×200		
	High		500	500	500	560	560	750	750	750	750	920	1000		
Air flow	Medium	m³/h	370	370	370	430	430	620	620	620	620	710	800		
	Low		310	310	310	360	360	550	550	550	550	590	680		
ESP (ad	ljustable)	Pa						10(30)							
Sound pressur	re level (H/M/L)	dB(A)		33/28/23		33/2	8/24		35/3	0/28		36/32/28	37/32/29		
We	ight	kg	17.5	17.5	17.5	17.5	17.5	21.5	21.5	21.5	21.5	28	28		
	Liquid pipe	mm	φ6.35						φ9.52						
Connecting	Gas pipe	mm		φ9.52					φ12.70						
pipe Dimensions	Condensate drain pipe	mm													

Medium static pressure duct

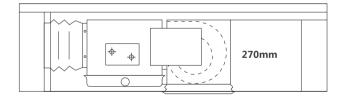
COMFORT

Quiet Operation

The fan motor of delicate and compact design equipped with brand-new propeller housing with vibration absorption function delivering operating noise as low as 33dB(A) to satisfy rigorous noise requirements at different sites.

AIR FLOW

Brushless DC motor

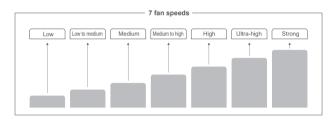

Brushless DC motor free of excitation loss and carbon brush loss, with the energy efficiency 30% higher than AC motor.

EASY INSTALLATION

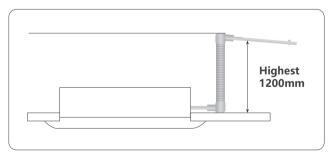
Compact Size

Thickness of only 270mm installed in a concealed way to lift the height of the suspended ceiling, especially suitable for ceilings with narrow height of suspended ceilings.

► HEALTH


Health

Can be equipped with HYplus TP04/05/06 purification module as optional.(Changeable ESP type only)


Seven fan speeds, up to 100Pa static pressure

Multiple noise reduction measures and seven fan speeds can achieve low-noise operation for a quieter environment(as low as 33dB (A)).

High-lift Drain Pump

Built-in with a fully-automatic drain pump. Pumping head is up to 1200mm, flexible for drainage pipe design.

Medium static pressure duct

Model (1	MDN-XX-AEI	3)	022	025	028	032	036	040	045	050	056	063
Nominal cooli	ng capacity	kW	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3
Nominal heati	ing capacity	kW	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1
Power s	supply	V/N/Hz					220/	1/50				
Motor	type	-					DC r	notor	·			-
Nominal inp	out power	W	35	35	35	40	40	40	45	45	45	60
Dimensions (WxDxH) mm 920×450×200 1140×450×200												
Air flow	High	m³/h	450	450 450 450 500 500 500 650 650 9							920	
ESP (adju	ustable)	Ра					30 (0/10)/30/50)				
Sound pressure	e level (H/M/L)	dB(A)	33/31/26	33/31/26	33/31/26	33/31/26	33/31/26	33/31/26	35/33/27	35/33/27	35/33/27	37/34/27
Weig	ght	kg	21.5	21.5	21.5	21.5	21.5	21.5	26.5	26.5	26.5	28
	Liquid pipe	mm					φ6	.35				
Connecting pipe Gas pipe mm φ12.70												
Dimensions	Condensate drain pipe	mm					DN	125				

Changeable ESP Duct

N	lodel (TMDN-XX-AE)		071	080	090	100	112	125	140	160
Nominal	cooling capacity	kW	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Nominal	heating capacity	kW	8	9.0	10.0	11.2	12.5	14.0	16.0	18.0
Po	wer supply	V/N/Hz				220/	1/50			
N	lotor type	-				DC r	notor			
Nomir	al input power	W	110	130	130	160	160	160	200	200
Dimen	sions (WxDxH)	mm			<u> </u>	1200×6	80×270			
Air flow	High	m3/h	1000	1300	1300	1600	1600	1600	2000	2000
ESP	(adjustable)	Pa	50(30~100)	50(30~100)	50(30~100)	50(30~100)	50(30~100)	50(30~100)	50(30~100)	50(30~100)
Sound pre	ssure level (H/M/L)	dB(A)	37/35/33	40/36/33	40/36/33	43/37/33	43/37/33	43/37/33	43/35/27	43/35/27
	Weight	kg	34.5	34.5	34.5	37	37	37	38	38
	Liquid pipe	mm				φ9	.52			
Connecting pipe Dimensions	Gas pipe	mm				φ15	5.88			
Dimensions	Condensate drain pipe	mm				DN	125			

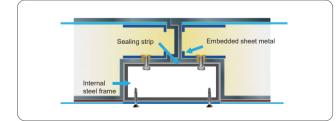
High static pressure duct

COMFORT

Quiet Operation

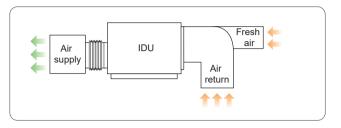
Brand-new noise reduction technology effectively reducing noises of the unit to provide quiet and pleasant environment.

AIR FLOW

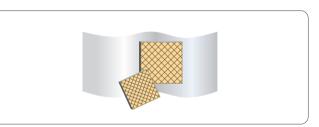

Ultra-high static pressure design

The external static pressure reaches 200-300Pa, making it possible to connect long air duct to realize long distance air supply, especially suitable for scenarios needing air supply by long air ducts.

High-end double-wall design

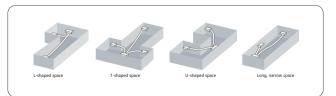

All the metal parts in the cabinet are isolated from outside metal parts, using polyurethane foam and specially designed sealing strips, avoiding the thermal insulation strips attached inside the common product to prevent condensation. Cold bridge and dripping are resolved, and the system noise is lower.

► HEALTH


Intake fresh air to improve air quality

Small amount of outdoor fresh air can be introduced through the air duct to ensure the quality of room air.

Customized air purification program as optional


Customized air purification program, the antibacterial filtering layer including photocatalyst and activated carbon can effectively remove odors, dust, smoke, and formaldehyde, benzene and other hazardous substances in decorative materials to create a comfort room with fresh air.

EASY INSTALLATION

Various air supply modes

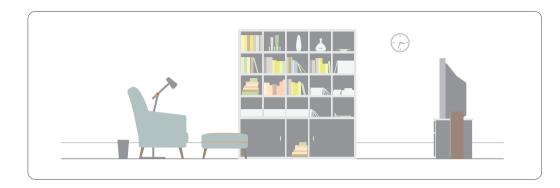
Choosing different air supply modes as per room structure, one IDU of air conditioner can meet the diversified space requirements.

Hidden installation and elegant appearance

The IDU and duct are in the ceiling and can fit into the interior decoration perfectly.Specifications

► High static pressure duct

Мо	del (TMDH-XX-AB)		100		112		125		140				
Nominal o	cooling capacity	kW	10.0		11.2		12.5		14.0				
Nominal h	eating capacity	kW	11.2		12.5		14.0		16.0				
Pow	ver supply	V/N/Hz		I		220/1/50 AC motor 420 500 1200×750×390 2000 2250 1600 1800							
Mo	otor type	-				AC motor		500 550 2250 2700 800 2150 450 1750 00/200 50 (100/200) /47/43 51/47/43					
Nomina	I input power	W	400		420		500		550				
Dimensi	ions (WxDxH)	mm		I	1	200×750×39	0						
	High		1800		2000		2250	2	2700				
Air flow	Medium	m³/h	1450		1600		1800	2	2150				
	Low		1050		1300		1450	1	1750				
ESP (adjustable)	Pa	50 (100/2	00)	50 (100/200)	50	0 (100/200)	50 (1	00/200)				
Sound press	sure level (H/M/L)	dB(A)	49/46/42 49/46/42 51/				51/47/43	51	/47/43				
١	Veight	kg	62		62		62		62				
	Liquid pipe	mm		I		φ9.52		1					
Connecting pipe Dimensions	Gas pipe	mm				φ15.88							
	Condensate drain pipe	e mm				DN25							
Model (T	MDH-XX-BI)	200	250	335	400	400 450 500 560 615							


Model (T	MDH-XX-BI)		200	250	335	400	450	500	560	615			
Nominal coolin	g capacity	kW	20.0	25.0	33.5	40.0	45.0	50.0	56.0	61.5			
Nominal heatin	g capacity	kW	22.4	27.0	37.5	45.0	50.0	56.0	63.0	69.0			
Power su	pply	V/N/Hz				380/	3/50						
Motor ty	vpe	-				AC n	notor						
Nominal inpu	ıt power	W	1100	1100	2200	2200	3000	3000	3000	3000			
Dimensions (WxDxH)	mm	906×14	10×590		1006×18	360×800		1006×23	360×840			
Air flo	N	m³/h	4000	4000	7000	7000	9000	9000	10000	10000			
ESP		Pa	100/200	100/200	100/180/250	100/180/250	100/180/250	100/180/250	200/300	200/300			
Sound press	ure level	dB(A)	54	54	55	55	57	57	59	59			
Weigh	ıt	kg	100	100	200	200	200	200	260	260			
	Liquid pipe	mm	φ1	2.7		φ15	5.88		φ19.05				
Connecting pipe Dimensions	Gas pipe	mm	φ22	2.23		φ2	8.6		φ3	1.8			
	Condensate drain pipe	mm				DN	132						

Wall Mounted

COMFORT

Quiet Operation

Brand-new highly efficient noise reduction motor built with the latest technology minimizing the noise of IDU.

► HEALTH

Wide air flow

The unique two-layered auto swing providing wider air supply range to optimize air flow compared to conventional units.

► EASY MAINTENANCE

Removable air return panel

The removable air return outlet panel facilitates the cleaning of filter and panel.

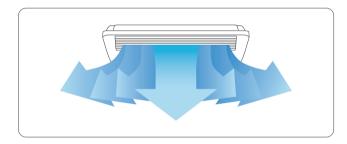
Wall-mounted

Model	(TMVW-XX-ACB)		028	036	040	056
Nominal cooli	ng capacity	kW	2.8	3.6	4.0	5.6
Nominal heati	ng capacity	kW	3.0	4.3	4.5	6.0
Powers	supply	V/N/Hz		220/	1/50	<u>.</u>
Motor	type	-		DC r	notor	
Nominal inp	out power	W	65	65	70	70
Dimensions	(WxDxH)	mm		803×209×287		913×209×287
	High		600	600	600	750
Air flow	Medium	m³/h	550	550	550	700
	Low		500	500	500	650
Sound pressure	e level (H/M/L)	dB(A)		40/36/32		45/41/35
Weig	ght	kg	12	12	12	13
	Liquid pipe	mm		φ6.35		φ9.52
Connecting pipe Dimensions	Gas pipe	mm		φ9.52		φ15.88
	Condensate drain pipe	mm		DN	120	·

Celling & Floor

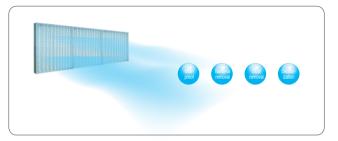
COMFORT

Quiet Operation


Unequally spaced oblique angle large diameter through flow fan is used to ensure strong air supply, lower fan speed and lower energy consumption.

AIR FLOW

Wide air flow


Auto wide-range air supply guaranteed gentle, natural, and even air flow. Various air supply modes are available. Anti-cold wind design ensures more comfortable air supply in winter.

► HEALTH

Health

An efficient filter device is equipped to completely filter dust, smoke and other small particles in the air, effectively preventing bacteria breeding and thoroughly improving the air quality.

EASY MAINTENANCE

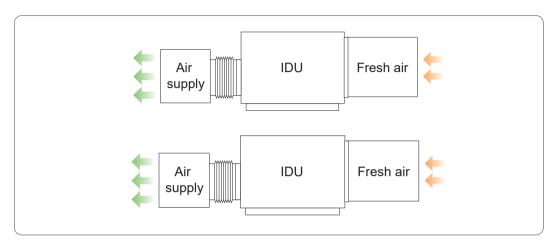
Removable air return panel

The removable air return outlet panel facilitates the cleaning of filter and panel.

Single-side maintenance

All maintenance work and the removal of fan and motor can be implemented through the access hole on the side.

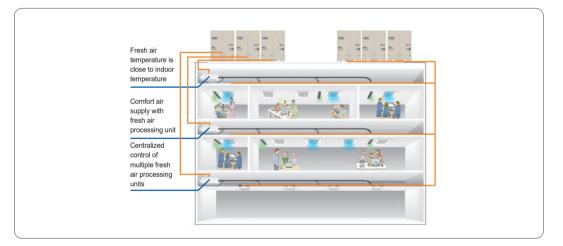
Ceiling & Floor


	Model (TMVX-XX-A)		028	036	056	071	090	112	125	140
Nomi	nal cooling capacity	kW	2.8	3.6	5.6	7.1	9.0	11.2	12.5	14.0
Nomi	nal heating capacity	kW	3.2	4.0	6.3	8.0	10.0	12.5	14.0	16.0
	Power supply	V/N/Hz		1		220/	1/50			
	Motor type	-				AC r	notor			
No	minal input power	w	48	62	85	120	156	210	240	240
Dim	ensions (WxDxH)	mm	905×673×243 1288×673×243 1672×67							3
	High		450	600	820	1100	1470	1800	2000	2000
Air flow	Medium	m³/h	360	480	700	980	1280	1550	1680	1680
	Low	1	280	370	570	850	1060	1250	1350	1350
Sound	pressure level (H/M/L)	dB(A)	42/39/36	43/40/38	45/42/40	47/44/41	49/46/42	50/47/44	51/48/45	51/48/45
	Weight	kg	28	28	30	40	40	45	45	45
0 "	Liquid pipe	mm		φ6.35	<u>.</u>		·	φ9.52	·	·
Connecting pipe Dimensions	Gas pipe	mm		φ12.70				φ15.88		
DITIENSIONS	Condensate drain pipe	mm				DN	125		12.5 14.0 240 672×673×24 2000 1680 1350 51/48/45	

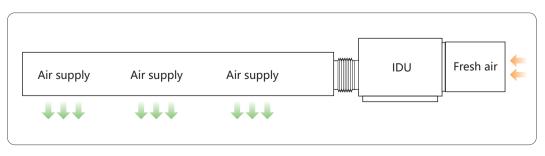
Full-fresh air handling unit

HEALTH

Intake fresh air


Intake fresh air to make the outdoor air close to room temperature through the indoor heat exchanger and the powerful heating/cooling capacity, so as to meet various requirements.

AIR FLOW


Multi-split unit for multi-point air supply

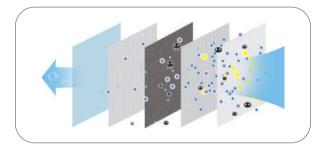
Air outlets can be flexibly configured to meet the requirements for multi-point air supply.

300Pa ultra-high static pressure

All fresh air handling unit has the static pressure up to 300 Pa, making it possible to connect extra-long air duct to realize long distance air supply and bring fresh and clean air to indoor places.

Full-fresh air handling unit

M	lodel (TMDF)		120A-020	175A- 022	210A- 020	250A- 015	250A- 020	250A- 030	300A- 020	400A- 020	400A- 030	500A- 020	500A- 030	600A- 020	600A- 030
Nominal coo	oling capacity	kW	14.0	25.0	28.0	28.0	28.0	28.0	28.0	45.0	45.0	56.0	56.0	56.0	56.0
Nominal hea	ating capacity	kW	10.0	14.0	17.4	17.4	17.4	17.4	17.4	28.0	28.0	35.0	35.0	35.0	35.0
Power	supply	V/N/Hz	220/1	/50						380)/3/50				
Moto	or type	-		<u>.</u>	<u>.</u>			AC n	notor						
Nominal in	nput power	w	330	630	700	480	560	790	750	880	1290	1000	1400	1350	1700
Dimensior	ns (WxDxH)	mm	1200×750×390			1300×8	20×500			1650×8	50×665	50×665 2000×850×665			
Air	flow	m³/h	1200	1750	2100	2500	2500	2500	3000	4000	4000	5000	5000	6000	6000
E	SP	Ра	200	220	200	150	200	300	200	200	300	200	300	200	300
Sound pre	essure level	dB(A)	49	49	49	52	55	58	56	59	62	62	65	62	65
We	eight	kg	62	75	75	75	75	75	75	140	140	165	165	165	165
	Liquid pipe	mm	φ9.52		1		φ1	2.70	1	1	1		φ15	5.88	
Connecting pipe	Gas pipe	mm	φ15.88			φ22	2.23			φ2ξ	5.58		φ28	8.58	
Dimensions	Condensate drain pipe	mm													


Heat Recovery Ventilator (HRV)

Multiple haze removal

Must-have for haze removal

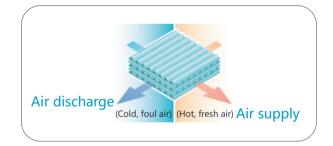
- Filtering offers layers of protection.
- The maximum PM2.5 removal rate is 95%.

Highly efficient energy recovery

Efficient heat exchange core

- The heat recovery core is formed by cross-laminating and rotating the single-sided corrugated, parallel paper sheets by 90°, with two mutually vertical and non-interfering channels. The fresh air and return air are able to exchange heat and humidity without being mixed when passing the two channels.
- With the latest technology of Japan, the parallel paper is even and tight, and boasts a heat recovery rate of 80%.

Specifications



Omni-directional air replacement

Fresh air enjoyed without opening the window

The unit is ceiling-mounted in places not that noisesentimental. With all air ports put indoors, it can ensure that air is supplied and discharged evenly and smoothly.

Model (TRV-XX)		015	025	035	050
Power supply	V/N/Hz		220/	/1/50	
Power Input	W	105	135	276	365/380
Current	A	0.5	0.6	1.25	1.7/1.76
Air flow rate	m³/h	150	250	350	500
Purification efficiency	%	95	95	95	95
ESP	Pa	80	80	80	50/100
Heat exchange efficiency (heating/cooling)	%	85/67	82/63	80/62	73/61
Enthalpy exchange efficiency (heating/cooling)	%	75/55	72/52	68/51	64/50
Sound pressure level	dB(A)	32	34	39	43
Weight	kg	24	24	27	53
Dimension	mm		884×555×230		950×972×314

Patent structure and low air leakage rate

The junction part of the unit uses aluminum profile with a concave groove and a convex groove and is secured with bolts and nuts to form a patented labyrinth sealing structure, achieving the air leakage rate as low as 0.029% - only 1/66 of the air leakage rate allowed in the national standard and realizing lower operating costs.

High efficiency and energy saving

The full core heat exchanger achieves high heat exchange efficiency, temperature efficiency as high as 70% and enthalpy efficiency as high as 60%.

Elimination of cold bridge and rust

All the metal parts in the cabinet of TICA's high-capacity duct IDU are isolated from outside metal parts using polyurethane foam and specially designed sealing strips, avoiding the thermal insulation strips attached inside the common product to prevent condensation. Cold bridge and dripping are resolved, and the system noise is lower.

Safe and reliable

The direct driven fan does not require maintenance. Only the filter needs to be cleaned regularly.

Specification

	Model (TFD-XX)		010FC	015FC	020FC	025FC	030FC	040FC	050FH	060FH	080FH	105FH
Air flow		m³/h	1000	1500	2000	2500	3000	4000	5000	6000	8000	10500
ESP	Air supply	Pa	90	110	120	110	100	110	100	100	110	100
ESP	Air discharge		90	110	120	110	100	110	100	100	110	100
Cooling	Temperature recovery efficiency	%	61	59	61	58	59	57	57	59	57	57
Cooling	Enthalpy recovery rate		52	51	53	50	51	50	50	51	50	50
Heating	Temperature recovery efficiency	%	72	71	73	70	71	69	69	71	69	69
Heating	Enthalpy recovery rate	%	60	59	61	58	59	58	58	59	58	58
	Air supply	kW	0.2	0.3	0.45	0.55	0.55	1	1.5	0.55X2	1.00X2	1.50X2
wotor power	Air discharge		0.2	0.3	0.45	0.55	0.55	1	1.5	0.55X2	1.00X2	1.50X2
Sound pressur	re level	dB(A)	53	53	55	56	58	59	62	62	63	66
Power supply		V/N/Hz		220/1/50					380/3/5	0		

High-end series fresh air ventilators

Wide application

Wide air flow range: 1000m3/h~6000m3/h Model models: Two-way ventilation and energy recovery Apply to occasions such as residences, meeting rooms, labs, offices, equipment rooms, restaurants and gyms.

High reliability

Structural design: The product is designed with a sheet metal structure, with insulation cotton attached inside.

Easy installation

Convenient installation: The machine is positioned in the ceiling and does not occupy the indoor effective space.

Model (TRD)-XX)		100	150	200	250	300	400	500	600
Fresh air flow		m³/h	1000	1500	2000	2500	3000	4000	5000	6000
ESP		Pa	120	160	105	100	150	125	95	120
Enthelpy receivery rate	Cooling	%	51	51	51	51	58	51	57	58
Enthalpy recovery rate	Heating	%	67	62	61	62	71	65	71	70
Temperature recovery efficiency	Cooling	%	67	61	61	64	64	67	67	67
Temperature recovery eniciency	Heating	%	82	77	75	80	82	78	82	84
Sound pressure level		dB(A)	45	51	52	53	52	58	59	60
Input power of the entire unit		W	550	920	1310	1630	1900	1940	2790	3280
Current of the entire unit		A	2.7	4.2	6.3	7.6	8.7	5.3	7.3	7.8
Power supply		V/N/Hz			220/1/50				380/3/50	
Net Weight		Kg	100	143	175	185	198	290	360	390

TIMS HYplus

TIMS HYplus Healthy VRF

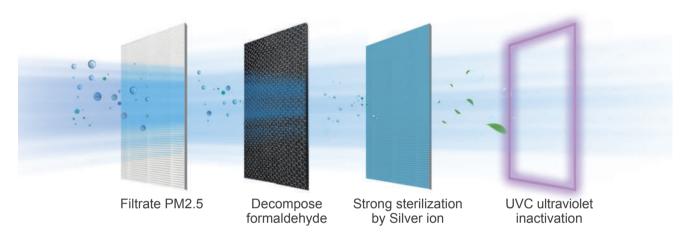
Quadruple Filtration

- ⊘ Physical intercept
- 🙏 Chemical aldehyde removal
- Silver ion bacteriostasis
- ॐ UVC disinfection

Healthy Air Is On the Way

Basic Benefits of Healthy Air

Reduce Illness Alleviate Allergies Pet-Friendly Sleep Better



Protect Your Home

Quadruple Filtration

Creating healthy life

Use chemical formaldehyde removal filters and the efficiency is up to 95% in a 30 m³ lab module.

Return to safe environment

Use Argenzil and UVC to sterilize and inactivate. The sterilization efficiency of Ag+ is 60000 times that of alcohol. UVC light can denature and dissociate protein. The primary purification efficiency of microbe is up to 90%.

Scene customization

Quadruple Filtration Type

Medical Special Type

TPL

Argenzil

PM2.5 purification efficiency: 95%, primary filtration Microbe efficiency: 95%, primary filtration

UVC

Ultra-thin Purification Type

INTREPID

PM2.5 cycle purification efficiency: 97%, 1h Microbe cycle efficiency: 99.9%, 2h Formaldehyde cycle purification efficiency: 90% 1h

RNH₂

Silver ion

Purify Module Matching Table

Turne	Model										Сара	acity	(kW)						
Туре	wouer	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Hyplus-Ultra-thin Purification Type (TP03)	TMDP	•	•	•	•	•	•	•	•	•	•	•							
Hyplus-Medical Special Type (TP04)	TMDP											•	•	•	•	•	•	customize	customize
Hyplus-Microelectrostatic Type (TP05)*	TMDP											•	•	•					
Hyplus-Quadruple Filtration Type (TP06)	TMDP	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•

Note: "*" is not available now.

► HYplus IDU

Model	TMDP-ACANN	N											
	3-AC motor)		022	025	028	032	036	040	045	050	056	063	071
Nominal cool	ling capacity	kW	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1
Nominal heat	ting capacity	kW	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0
Power	supply	V/N/Hz						220/1/50					
Motor	type	-						AC motor					
Nominal in	put power	W	54	54	54	55	55	55	77	77	77	100	105
Dimensions	s (WxDxH)	mm			700×4	50×200			9	20×450×20	00	1140×4	50×200
	High		500	500	500	560	560	560	750	750	750	920	1000
Air flow	Medium	m³/h	370	370	370	430	430	430	620	620	620	710	800
	Low		310	310	310	360	360	360	550	550	550	590	680
ESP (adj	ustable)	Pa						10(30)					
Sound pressure	e level (H/M/L)	dB(A)	33/28/23	33/28/23	33/28/23	33/28/24	33/28/24	33/28/24	35/30/28	35/30/28	35/30/28	36/32/28	37/32/29
Wei	ght	kg	17.5	17.5	17.5	17.5	17.5	17.5	21.5	21.5	21.5	28	28
Ormersting	Liquid pipe	mm					φ6	.35					φ9.52
Connecting pipe	Gas pipe	mm		φ9.52					φ12.70				φ15.88
Dimensions	Condensate drain pipe	mm					DN25						
Dimensio	Dimension of filter mr				18.5×7	00×200			18	3.5×920×20	00	18.5×11	140×200
	TMDP-ACBNN 3-DC motor)	IN	022	025	028	032	036	040	045	050	056	063	071
Nominal cool	ling capacity	kW	2.2	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1
Nominal heat	ting capacity	kW	2.5	2.8	3.2	3.6	4.0	4.5	5.0	5.6	6.3	7.1	8.0
Power	supply	V/N/Hz						220/1/50					
Motor	type	-						DC motor					
Nominal in	put power	W	40	40	40	45	45	50	50	50	50	60	60
Dimensions	s (WxDxH)	mm		7	00×450×20	00			920×45	50×200		1140×4	50×200
	High		500	500	500	560	560	750	750	750	750	920	1000
Air flow	Medium	m³/h	370	370	370	430	430	620	620	620	620	710	800
	Low		310	310	310	360	360	550	550	550	550	590	680
ESP (adj	ustable)	Pa						10(30)					
Sound pressure	e level (H/M/L)	dB(A)		33/28/23		33/2	28/24		35/3	0/28		37/32/29	
Wei	ght	kg	17.5	17.5	17.5	17.5	17.5	21.5	21.5	21.5	21.5	28	28
0	Liquid pipe	mm		φ6.35					φ9	.52			
Connecting pipe	Gas pipe	mm		φ9.52					φ12	2.70			
Dimensions	Condensate drain pipe	mm						DN25					
Dimonoio	n of filtor	mm		10	Ex700x20	00			10 5 20	20~200		10 5 11	40×200

18.5×700×200

18.5×920×200

18.5×1140×200

Dimension of filter

mm

► HYplus IDU

Model	TMDP-AEBNN (TP06)	IN	022	025	028 0	32 030	6 040	045	050	056
Nominal coo	ling capacity	kW	2.2	2.5	2.8 3	.2 3.6	6 4.0	4.5	5.0	5.6
	ating capacity	kW	2.5			.6 4.0		5.0	5.6	6.3
	supply	V/N/Hz				220/1	/50			
	r type	-				DC m	otor			
Nominal i	nput power	W	35	35	35 4	40 40	40	45	45	45
Dimensior	is (WxDxH)	mm			920×450×200)			1140×450×20	00
Air flow	High	m³/h	450	450	450 5	00 50	0 500	650	650	650
ESP (ad	ljustable)	Ра			I	10(0~	·30)			
	ure level (H/M/ _)	dB(A)	3	3/28/23		33/28	8/24		35/30/28	
We	eight	kg			21.5				26.5	
One	Liquid pipe	mm				φ6.3	35			
Connecting pipe	Gas pipe	mm				φ12.	70			
Dimensions	Condensate drain pipe	mm				DN2	25			
Dimensi	on of filter	mm			42×920×200				42×1140×20	0
Model	TMDP-AEBNN (TP04)	IN	071	080	090	100	112	125	140	160
Nominal cod	ling capacity	kW	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Nominal hea	ating capacity	kW	8.0	9.0	10.0	11.2	12.5	14.0	16.0	18.0
Power	supply	V/N/Hz			I	220/1	/50			
Moto	r type	-				DC m	otor			
Nominal i	nput power	W	100	130	130	160	160	160	200	200
Dimensior	is (WxDxH)	mm				1200×68	0×270			
Air flow	High	m³/h	1000	1300	1300	1600	1600	1600	2000	2000
ESP (ad	ljustable)	Ра				10(0~	-50)			
	ure level (H/M/ _)	dB(A)	37/32/29	40/36/33	40/36/33	43/37/33	43/37/33	43/37/33	43/35/27	43/35/27
We	eight	kg	34.5	34.5	34.5	37	37	37	38	38
0	Liquid pipe	mm				φ9.5	52			
Connecting pipe	Gas pipe	mm				φ15.	88			
Dimensions	Condensate drain pipe	mm				DN2	25			
Dimensi	on of filter	mm				150×120	0×270			
Мос	lel TMDP-TP0)4	071AEBNNN	080AEBNNN	090AEBNNN	100AEBNNN	112AEBNNN	125AEBNNN	140AEBNNN	160AEBNN
		1.14/	7.4	0.0	0.0	10.0	44.0	40.5	11.0	

Model TMDP-TP04			071AEBNNN	080AEBNNN	090AEBNNN	100AEBNNN	112AEBNNN	125AEBNNN	140AEBNNN	160AEBNNN
Nominal cooling capacity		kW	7.1	8.0	9.0	10.0	11.2	12.5	14.0	16.0
Nominal heating capacity		kW	8.0	9.0	10.0	11.2	12.5	14.0	16.0	18.0
Power supply		V/N/Hz	220/1/50							
Motor type		-	DC motor							
Nominal input power		W	100	130	130	160	160	160	200	200
Dimensions (WxDxH)		mm	1200×680×270							
Air flow	High	m³/h	1000	1300	1300	1600	1600	1600	2000	2000
ESP (adjustable)		Pa	10(0~50)							
Sound pressure level (H/M/L)		dB(A)	37/32/29	40/36/33	40/36/33	43/37/33	43/37/33	43/37/33	43/35/27	43/35/27
Weight		kg	34.5	34.5	34.5	37	37	37	38	38
Connecting pipe Dimensions	Liquid pipe	mm	φ9.52							
	Gas pipe	mm	φ15.88							
	Condensate drain pipe	mm	DN25							
Dimension of filter		mm	150×1200×270							

Intelligent Control

Provide you with convenient services

Wireless Remote Controller

Mode Setting: Cool/Heat/Dry/Fan/Auto Scheduled power-on/off Temperature setting Fan speed setting: High/Medium/Low/Auto Eco/Quiet/Sleep functions Vertical swing/Horizontal swing

TMC311

Wired Remote Controllers

86×86mm panel, LED Error reporting ON/OFF, swing, memory function, etc. Cool/Heat/Auto/Fan/Dry modes Temperature setting, timer power-on/-off Touch keys Filter cleaning reminder Background light

Central Controllers

8-inch colored touchscreen

Supports centralized control of a maximum of 64 IDUs in 8 systems

Setting, management and monitoring (set temperature,air flow) of IDU

Accessible to IDU/ODU network

Schedul control by week/month/year

Unified management of IDU groups

Statistics of changes in running statuses of all devices in a certain time period.

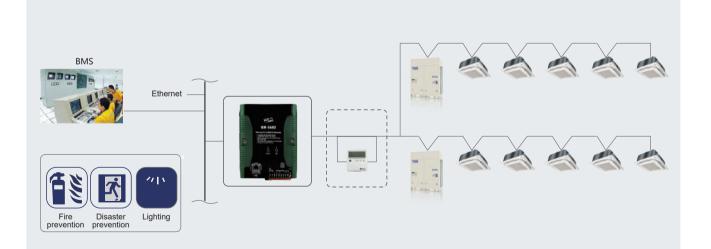
Fault display, parameter status query, device query, and permission management

Display of indoor environmental indicators (IDU needs to be equipped with sensor nodes)

TMC315/TE300

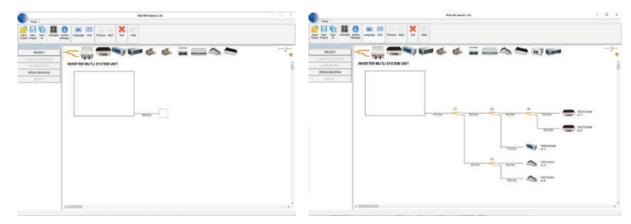
OCPAD

Building Management System (BMS)


- TIMS adopts multiple BMSs to access to the BAS for comprehensively auto control.
- TICA BMS supports access via ModBus. Up to 1024 IDUs and 16 ODUs can be connected.

Basic control functions

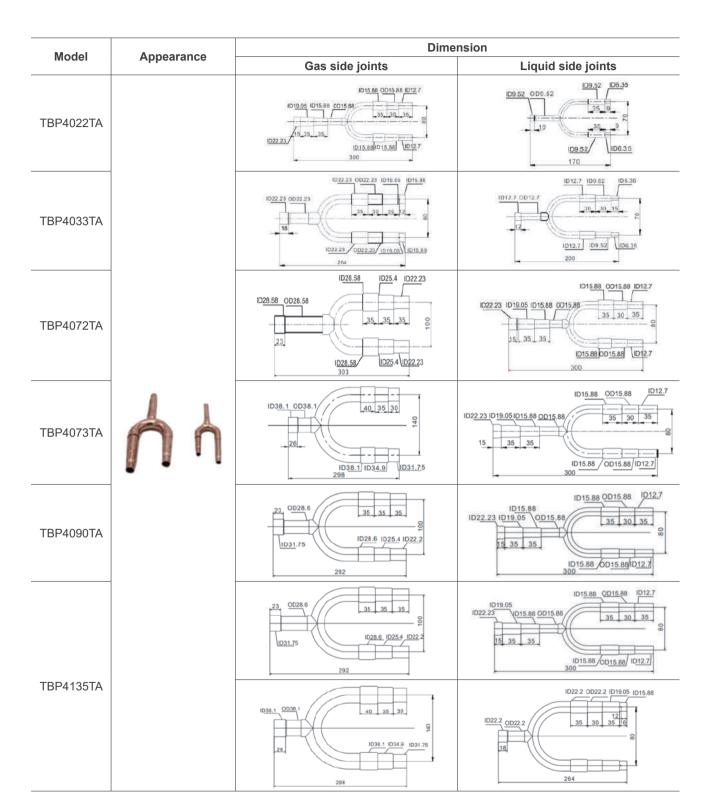
- AC on/off, operation, and monitoring the operation status
- 2 Monitoring the IDU error code
- 3 Monitoring and setting the IDU temperature
- 4 Monitoring and switching the operating mode
- 5 Remote controller lock function
- 6 Service monitoring
- 7 Auto running


- 8 Mode lock function, user can lock the running mode of indoor unit
- 9 Free management by group
- 10 Complete schedule management
- 1 Historical data records
- 12 Schedule control by week/month/year
- 13 Centralized control function
- 14 Interlock control (fire alarm, door lock, fault, etc.)

Intelligent software

Selection software

TICA dedicated to provide the best HVAC engineering support and solutions focused on effectively designed, built, supervised and maintained throughout the lifecycle, providing our customers a faster, easier, and a more accurate way in everyday duties.


Management software

The IDUs are connected to a computer by the data acquisition module, so that full centralized control can be implemented on this management software. The control function is very powerful, and operations are simple and clear. One set of software supports up to 32 systems and 2048 IDUs for large-scale centralized control. The control signal of data acquisition module can reach up to 1200 m.

- Free management by group
- Complete schedule management
- Historical data records
- Schedule control by week/month/year
- Centralized control function
- Centralized control over air conditioning systems in multiple buildings at the same place
- Permission setting
- Temperature setting, timer power-on/-off
- Error reporting
- Interlocking control
- Remote management

Branch Pipe

«TICA PRO» LLC Tel.: +7 495 127 79 00, +7 969 190 85 85 E-mail: info@tica.pro **www.tica.ru**

Note: Due to constant improvement and innovation of TICA's products, the product models, specifications and parameters contained in this document are subject to change without prior notice.